Singularities of Electron Kernel Functions in an External Electromagnetic Field
The electron kernel functions are derived from solutions of the second-order wave equation, using the proper-time parametrization. Iterated kernel functions are introduced and a gauge-independent perturbation theory is developed. The separation of singular parts proceeds in terms of the iterated ker...
Gespeichert in:
Veröffentlicht in: | Proc. Roy. Soc. (London) 1954-02, Vol.222 (1148), p.93-108 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 1148 |
container_start_page | 93 |
container_title | Proc. Roy. Soc. (London) |
container_volume | 222 |
creator | Valatin, J. G. |
description | The electron kernel functions are derived from solutions of the second-order wave equation, using the proper-time parametrization. Iterated kernel functions are introduced and a gauge-independent perturbation theory is developed. The separation of singular parts proceeds in terms of the iterated kernel functions valid in the absence of an electromagnetic field, and the singular expressions which have to be compensated in order to determine the physically significant part of the vacuum polarization are obtained in a more transparent form than those given originally by Heisenberg. |
doi_str_mv | 10.1098/rspa.1954.0055 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_highwire_royalsociety_royprsa_222_1148_93</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>99379</jstor_id><sourcerecordid>99379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-26f3963a0b2f4a11b26bdc6310b03492ccd474082c55066a7b4af3ef7e0322f93</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxSMEEqVw5cAp4p7F344vSFW1W1ArimhZjiPH6-x6SZ2V7UCXv77OBioqRE-2Nb838-a5KF5jNMNI1e9C3OkZVpzNEOL8SXGEmcQVUUw8zXcqWMURwc-LFzFuEUKK1_KouLxyfj10OrjkbCz7tpx31qTQ-_LcBm-7cjF4k1zvY-l8qX05v025oLs_4I1ee5ucKRfOdquXxbNWd9G--n0eF18X8-vTD9XF5dnH05OLynCEU0VES5WgGjWkZRrjhohmZQTFqEGUKWLMikmGamI4R0Jo2TDdUttKiyghraLHxdupbx-Tg2hcsmZjeu-zJ2AMY85lhmYTZEIfY7At7IK70WEPGMGYGYyZwZgZjJllAZ0Eod9n971xNu1h2w_jwvH_qviY6svV5xOsaP2DEOIwZjWgOi8qsUQEfrndod0IQAbAxThYOGAPx_w79c00dRtTH-43U4rKMZ5qKrqY7O19UYfvICSVHJY1A75cXKtPYgnfMo8mfuPWm58uWHiwS37sQtQHgwdrimbJ-0clo9v8Icn69LcO2qHrYLdq6R12VdW7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Singularities of Electron Kernel Functions in an External Electromagnetic Field</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Valatin, J. G.</creator><creatorcontrib>Valatin, J. G. ; Inst. for Theoretical Physics, Copenhagen, Denmark ; Institute Henri Poincare, Paris, France</creatorcontrib><description>The electron kernel functions are derived from solutions of the second-order wave equation, using the proper-time parametrization. Iterated kernel functions are introduced and a gauge-independent perturbation theory is developed. The separation of singular parts proceeds in terms of the iterated kernel functions valid in the absence of an electromagnetic field, and the singular expressions which have to be compensated in order to determine the physically significant part of the vacuum polarization are obtained in a more transparent form than those given originally by Heisenberg.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1954.0055</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Approximation ; DIFFERENTIAL EQUATIONS ; Dirac equation ; ELECTROMAGNETIC FIELDS ; ELECTRONS ; FIELD THEORY ; GAUGE INVARIANCE ; Hankel functions ; INTEGRAL EQUATIONS ; Kernel functions ; KERNELS ; Mathematical expressions ; PERTURBATION THEORY ; PHYSICS ; POLARIZATION ; QUANTUM MECHANICS ; Singular terms ; VACUUM ; Wave equations</subject><ispartof>Proc. Roy. Soc. (London), 1954-02, Vol.222 (1148), p.93-108</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-26f3963a0b2f4a11b26bdc6310b03492ccd474082c55066a7b4af3ef7e0322f93</citedby><cites>FETCH-LOGICAL-c501t-26f3963a0b2f4a11b26bdc6310b03492ccd474082c55066a7b4af3ef7e0322f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/99379$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/99379$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4411557$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Valatin, J. G.</creatorcontrib><creatorcontrib>Inst. for Theoretical Physics, Copenhagen, Denmark</creatorcontrib><creatorcontrib>Institute Henri Poincare, Paris, France</creatorcontrib><title>Singularities of Electron Kernel Functions in an External Electromagnetic Field</title><title>Proc. Roy. Soc. (London)</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>The electron kernel functions are derived from solutions of the second-order wave equation, using the proper-time parametrization. Iterated kernel functions are introduced and a gauge-independent perturbation theory is developed. The separation of singular parts proceeds in terms of the iterated kernel functions valid in the absence of an electromagnetic field, and the singular expressions which have to be compensated in order to determine the physically significant part of the vacuum polarization are obtained in a more transparent form than those given originally by Heisenberg.</description><subject>Approximation</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>Dirac equation</subject><subject>ELECTROMAGNETIC FIELDS</subject><subject>ELECTRONS</subject><subject>FIELD THEORY</subject><subject>GAUGE INVARIANCE</subject><subject>Hankel functions</subject><subject>INTEGRAL EQUATIONS</subject><subject>Kernel functions</subject><subject>KERNELS</subject><subject>Mathematical expressions</subject><subject>PERTURBATION THEORY</subject><subject>PHYSICS</subject><subject>POLARIZATION</subject><subject>QUANTUM MECHANICS</subject><subject>Singular terms</subject><subject>VACUUM</subject><subject>Wave equations</subject><issn>1364-5021</issn><issn>0080-4630</issn><issn>1471-2946</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1954</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxSMEEqVw5cAp4p7F344vSFW1W1ArimhZjiPH6-x6SZ2V7UCXv77OBioqRE-2Nb838-a5KF5jNMNI1e9C3OkZVpzNEOL8SXGEmcQVUUw8zXcqWMURwc-LFzFuEUKK1_KouLxyfj10OrjkbCz7tpx31qTQ-_LcBm-7cjF4k1zvY-l8qX05v025oLs_4I1ee5ucKRfOdquXxbNWd9G--n0eF18X8-vTD9XF5dnH05OLynCEU0VES5WgGjWkZRrjhohmZQTFqEGUKWLMikmGamI4R0Jo2TDdUttKiyghraLHxdupbx-Tg2hcsmZjeu-zJ2AMY85lhmYTZEIfY7At7IK70WEPGMGYGYyZwZgZjJllAZ0Eod9n971xNu1h2w_jwvH_qviY6svV5xOsaP2DEOIwZjWgOi8qsUQEfrndod0IQAbAxThYOGAPx_w79c00dRtTH-43U4rKMZ5qKrqY7O19UYfvICSVHJY1A75cXKtPYgnfMo8mfuPWm58uWHiwS37sQtQHgwdrimbJ-0clo9v8Icn69LcO2qHrYLdq6R12VdW7</recordid><startdate>19540223</startdate><enddate>19540223</enddate><creator>Valatin, J. G.</creator><general>The Royal Society</general><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19540223</creationdate><title>Singularities of Electron Kernel Functions in an External Electromagnetic Field</title><author>Valatin, J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-26f3963a0b2f4a11b26bdc6310b03492ccd474082c55066a7b4af3ef7e0322f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1954</creationdate><topic>Approximation</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>Dirac equation</topic><topic>ELECTROMAGNETIC FIELDS</topic><topic>ELECTRONS</topic><topic>FIELD THEORY</topic><topic>GAUGE INVARIANCE</topic><topic>Hankel functions</topic><topic>INTEGRAL EQUATIONS</topic><topic>Kernel functions</topic><topic>KERNELS</topic><topic>Mathematical expressions</topic><topic>PERTURBATION THEORY</topic><topic>PHYSICS</topic><topic>POLARIZATION</topic><topic>QUANTUM MECHANICS</topic><topic>Singular terms</topic><topic>VACUUM</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Valatin, J. G.</creatorcontrib><creatorcontrib>Inst. for Theoretical Physics, Copenhagen, Denmark</creatorcontrib><creatorcontrib>Institute Henri Poincare, Paris, France</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Proc. Roy. Soc. (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valatin, J. G.</au><aucorp>Inst. for Theoretical Physics, Copenhagen, Denmark</aucorp><aucorp>Institute Henri Poincare, Paris, France</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularities of Electron Kernel Functions in an External Electromagnetic Field</atitle><jtitle>Proc. Roy. Soc. (London)</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1954-02-23</date><risdate>1954</risdate><volume>222</volume><issue>1148</issue><spage>93</spage><epage>108</epage><pages>93-108</pages><issn>1364-5021</issn><issn>0080-4630</issn><eissn>1471-2946</eissn><eissn>2053-9169</eissn><abstract>The electron kernel functions are derived from solutions of the second-order wave equation, using the proper-time parametrization. Iterated kernel functions are introduced and a gauge-independent perturbation theory is developed. The separation of singular parts proceeds in terms of the iterated kernel functions valid in the absence of an electromagnetic field, and the singular expressions which have to be compensated in order to determine the physically significant part of the vacuum polarization are obtained in a more transparent form than those given originally by Heisenberg.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1954.0055</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proc. Roy. Soc. (London), 1954-02, Vol.222 (1148), p.93-108 |
issn | 1364-5021 0080-4630 1471-2946 2053-9169 |
language | eng |
recordid | cdi_highwire_royalsociety_royprsa_222_1148_93 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection |
subjects | Approximation DIFFERENTIAL EQUATIONS Dirac equation ELECTROMAGNETIC FIELDS ELECTRONS FIELD THEORY GAUGE INVARIANCE Hankel functions INTEGRAL EQUATIONS Kernel functions KERNELS Mathematical expressions PERTURBATION THEORY PHYSICS POLARIZATION QUANTUM MECHANICS Singular terms VACUUM Wave equations |
title | Singularities of Electron Kernel Functions in an External Electromagnetic Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularities%20of%20Electron%20Kernel%20Functions%20in%20an%20External%20Electromagnetic%20Field&rft.jtitle=Proc.%20Roy.%20Soc.%20(London)&rft.au=Valatin,%20J.%20G.&rft.aucorp=Inst.%20for%20Theoretical%20Physics,%20Copenhagen,%20Denmark&rft.date=1954-02-23&rft.volume=222&rft.issue=1148&rft.spage=93&rft.epage=108&rft.pages=93-108&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1954.0055&rft_dat=%3Cjstor_osti_%3E99379%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=99379&rfr_iscdi=true |