Optimal control of epidemics in metapopulations

Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2009-12, Vol.6 (41), p.1135-1144
Hauptverfasser: Rowthorn, Robert E., Laxminarayan, Ramanan, Gilligan, Christopher A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1144
container_issue 41
container_start_page 1135
container_title Journal of the Royal Society interface
container_volume 6
creator Rowthorn, Robert E.
Laxminarayan, Ramanan
Gilligan, Christopher A.
description Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used if the objective is to minimize the discounted number of infected individuals during the course of an epidemic. We show, for a system with two interconnected regions and an epidemic in which infected individuals recover and can be reinfected, that equalizing infection in the two regions is the worst possible strategy in minimizing the total level of infection. Treatment should instead be preferentially directed at the region with the lower level of infection, treating the other subpopulation only when there is resource left over. The same strategy holds with preferential treatments of regions with lower levels of infection when quarantine is introduced.
doi_str_mv 10.1098/rsif.2008.0402
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_royalsociety_royinterface_6_41_1135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734101901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-bbc388555e6399c646865aff1285a8062b27824574ce07da6e1d3f29113218873</originalsourceid><addsrcrecordid>eNp9ks1rFDEYhwex2A-9epS5eZptvpMBEWytVSgUinrw8pLNJN3Umck0mbHd_94Mu-y2Bz0lL_l9vDykKN5itMCoVqcxebcgCKkFYoi8KI6wZKTiQpCXu7uqD4vjlO4QopJy_qo4xDUlTChxVJxeD6PvdFua0I8xtGVwpR18YztvUun7srOjHsIwtXr0oU-viwOn22TfbM-T4seXi-_nX6ur68tv55-uKiMoG6vl0lClOOdW0Lo2Yi7j2jlMFNcKCbIkUhHGJTMWyUYLixvqSI0xJVgpSU-Kj5vcYVp2tjE2b6dbGGJeNq4haA_PX3q_gtvwB4jCErM6B7zfBsRwP9k0QueTsW2rexumBJIyjHCNcFYuNkoTQ0rRul0LRjBDhhkyzJBhhpwN757utpdvqWYB3QhiWGdIwXg7ruEuTLHP479jq43Lp9E-7lJ1_A1CUsnhp2JwdnMmP4ubS_i1b1n529WDjxae1eXB96ONThsLAhiGDJdn14f_uuad5r-Qse5d4KY2w28c_Qtc1sHN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734101901</pqid></control><display><type>article</type><title>Optimal control of epidemics in metapopulations</title><source>MEDLINE</source><source>PubMed Central</source><creator>Rowthorn, Robert E. ; Laxminarayan, Ramanan ; Gilligan, Christopher A.</creator><creatorcontrib>Rowthorn, Robert E. ; Laxminarayan, Ramanan ; Gilligan, Christopher A.</creatorcontrib><description>Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used if the objective is to minimize the discounted number of infected individuals during the course of an epidemic. We show, for a system with two interconnected regions and an epidemic in which infected individuals recover and can be reinfected, that equalizing infection in the two regions is the worst possible strategy in minimizing the total level of infection. Treatment should instead be preferentially directed at the region with the lower level of infection, treating the other subpopulation only when there is resource left over. The same strategy holds with preferential treatments of regions with lower levels of infection when quarantine is introduced.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2008.0402</identifier><identifier>PMID: 19324686</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Algorithms ; Animals ; Control Theory ; Disease Outbreaks - prevention &amp; control ; Economic Modelling ; Epidemiological Modelling ; Humans ; Infection Control - methods ; Models, Statistical ; Models, Theoretical ; Plant Diseases - prevention &amp; control ; Public Health ; Quarantine ; Spatio-Temporal Epidemics ; Treatment Outcome</subject><ispartof>Journal of the Royal Society interface, 2009-12, Vol.6 (41), p.1135-1144</ispartof><rights>2009 The Royal Society</rights><rights>2009 The Royal Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-bbc388555e6399c646865aff1285a8062b27824574ce07da6e1d3f29113218873</citedby><cites>FETCH-LOGICAL-c634t-bbc388555e6399c646865aff1285a8062b27824574ce07da6e1d3f29113218873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817149/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817149/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19324686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowthorn, Robert E.</creatorcontrib><creatorcontrib>Laxminarayan, Ramanan</creatorcontrib><creatorcontrib>Gilligan, Christopher A.</creatorcontrib><title>Optimal control of epidemics in metapopulations</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used if the objective is to minimize the discounted number of infected individuals during the course of an epidemic. We show, for a system with two interconnected regions and an epidemic in which infected individuals recover and can be reinfected, that equalizing infection in the two regions is the worst possible strategy in minimizing the total level of infection. Treatment should instead be preferentially directed at the region with the lower level of infection, treating the other subpopulation only when there is resource left over. The same strategy holds with preferential treatments of regions with lower levels of infection when quarantine is introduced.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Control Theory</subject><subject>Disease Outbreaks - prevention &amp; control</subject><subject>Economic Modelling</subject><subject>Epidemiological Modelling</subject><subject>Humans</subject><subject>Infection Control - methods</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Plant Diseases - prevention &amp; control</subject><subject>Public Health</subject><subject>Quarantine</subject><subject>Spatio-Temporal Epidemics</subject><subject>Treatment Outcome</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1rFDEYhwex2A-9epS5eZptvpMBEWytVSgUinrw8pLNJN3Umck0mbHd_94Mu-y2Bz0lL_l9vDykKN5itMCoVqcxebcgCKkFYoi8KI6wZKTiQpCXu7uqD4vjlO4QopJy_qo4xDUlTChxVJxeD6PvdFua0I8xtGVwpR18YztvUun7srOjHsIwtXr0oU-viwOn22TfbM-T4seXi-_nX6ur68tv55-uKiMoG6vl0lClOOdW0Lo2Yi7j2jlMFNcKCbIkUhHGJTMWyUYLixvqSI0xJVgpSU-Kj5vcYVp2tjE2b6dbGGJeNq4haA_PX3q_gtvwB4jCErM6B7zfBsRwP9k0QueTsW2rexumBJIyjHCNcFYuNkoTQ0rRul0LRjBDhhkyzJBhhpwN757utpdvqWYB3QhiWGdIwXg7ruEuTLHP479jq43Lp9E-7lJ1_A1CUsnhp2JwdnMmP4ubS_i1b1n529WDjxae1eXB96ONThsLAhiGDJdn14f_uuad5r-Qse5d4KY2w28c_Qtc1sHN</recordid><startdate>20091206</startdate><enddate>20091206</enddate><creator>Rowthorn, Robert E.</creator><creator>Laxminarayan, Ramanan</creator><creator>Gilligan, Christopher A.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091206</creationdate><title>Optimal control of epidemics in metapopulations</title><author>Rowthorn, Robert E. ; Laxminarayan, Ramanan ; Gilligan, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-bbc388555e6399c646865aff1285a8062b27824574ce07da6e1d3f29113218873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Control Theory</topic><topic>Disease Outbreaks - prevention &amp; control</topic><topic>Economic Modelling</topic><topic>Epidemiological Modelling</topic><topic>Humans</topic><topic>Infection Control - methods</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Plant Diseases - prevention &amp; control</topic><topic>Public Health</topic><topic>Quarantine</topic><topic>Spatio-Temporal Epidemics</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowthorn, Robert E.</creatorcontrib><creatorcontrib>Laxminarayan, Ramanan</creatorcontrib><creatorcontrib>Gilligan, Christopher A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowthorn, Robert E.</au><au>Laxminarayan, Ramanan</au><au>Gilligan, Christopher A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of epidemics in metapopulations</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2009-12-06</date><risdate>2009</risdate><volume>6</volume><issue>41</issue><spage>1135</spage><epage>1144</epage><pages>1135-1144</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used if the objective is to minimize the discounted number of infected individuals during the course of an epidemic. We show, for a system with two interconnected regions and an epidemic in which infected individuals recover and can be reinfected, that equalizing infection in the two regions is the worst possible strategy in minimizing the total level of infection. Treatment should instead be preferentially directed at the region with the lower level of infection, treating the other subpopulation only when there is resource left over. The same strategy holds with preferential treatments of regions with lower levels of infection when quarantine is introduced.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>19324686</pmid><doi>10.1098/rsif.2008.0402</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2009-12, Vol.6 (41), p.1135-1144
issn 1742-5689
1742-5662
language eng
recordid cdi_highwire_royalsociety_royinterface_6_41_1135
source MEDLINE; PubMed Central
subjects Algorithms
Animals
Control Theory
Disease Outbreaks - prevention & control
Economic Modelling
Epidemiological Modelling
Humans
Infection Control - methods
Models, Statistical
Models, Theoretical
Plant Diseases - prevention & control
Public Health
Quarantine
Spatio-Temporal Epidemics
Treatment Outcome
title Optimal control of epidemics in metapopulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20epidemics%20in%20metapopulations&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Rowthorn,%20Robert%20E.&rft.date=2009-12-06&rft.volume=6&rft.issue=41&rft.spage=1135&rft.epage=1144&rft.pages=1135-1144&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2008.0402&rft_dat=%3Cproquest_highw%3E734101901%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734101901&rft_id=info:pmid/19324686&rfr_iscdi=true