Optimal control of epidemics in metapopulations
Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2009-12, Vol.6 (41), p.1135-1144 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1144 |
---|---|
container_issue | 41 |
container_start_page | 1135 |
container_title | Journal of the Royal Society interface |
container_volume | 6 |
creator | Rowthorn, Robert E. Laxminarayan, Ramanan Gilligan, Christopher A. |
description | Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used if the objective is to minimize the discounted number of infected individuals during the course of an epidemic. We show, for a system with two interconnected regions and an epidemic in which infected individuals recover and can be reinfected, that equalizing infection in the two regions is the worst possible strategy in minimizing the total level of infection. Treatment should instead be preferentially directed at the region with the lower level of infection, treating the other subpopulation only when there is resource left over. The same strategy holds with preferential treatments of regions with lower levels of infection when quarantine is introduced. |
doi_str_mv | 10.1098/rsif.2008.0402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_royalsociety_royinterface_6_41_1135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734101901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-bbc388555e6399c646865aff1285a8062b27824574ce07da6e1d3f29113218873</originalsourceid><addsrcrecordid>eNp9ks1rFDEYhwex2A-9epS5eZptvpMBEWytVSgUinrw8pLNJN3Umck0mbHd_94Mu-y2Bz0lL_l9vDykKN5itMCoVqcxebcgCKkFYoi8KI6wZKTiQpCXu7uqD4vjlO4QopJy_qo4xDUlTChxVJxeD6PvdFua0I8xtGVwpR18YztvUun7srOjHsIwtXr0oU-viwOn22TfbM-T4seXi-_nX6ur68tv55-uKiMoG6vl0lClOOdW0Lo2Yi7j2jlMFNcKCbIkUhHGJTMWyUYLixvqSI0xJVgpSU-Kj5vcYVp2tjE2b6dbGGJeNq4haA_PX3q_gtvwB4jCErM6B7zfBsRwP9k0QueTsW2rexumBJIyjHCNcFYuNkoTQ0rRul0LRjBDhhkyzJBhhpwN757utpdvqWYB3QhiWGdIwXg7ruEuTLHP479jq43Lp9E-7lJ1_A1CUsnhp2JwdnMmP4ubS_i1b1n529WDjxae1eXB96ONThsLAhiGDJdn14f_uuad5r-Qse5d4KY2w28c_Qtc1sHN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734101901</pqid></control><display><type>article</type><title>Optimal control of epidemics in metapopulations</title><source>MEDLINE</source><source>PubMed Central</source><creator>Rowthorn, Robert E. ; Laxminarayan, Ramanan ; Gilligan, Christopher A.</creator><creatorcontrib>Rowthorn, Robert E. ; Laxminarayan, Ramanan ; Gilligan, Christopher A.</creatorcontrib><description>Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used if the objective is to minimize the discounted number of infected individuals during the course of an epidemic. We show, for a system with two interconnected regions and an epidemic in which infected individuals recover and can be reinfected, that equalizing infection in the two regions is the worst possible strategy in minimizing the total level of infection. Treatment should instead be preferentially directed at the region with the lower level of infection, treating the other subpopulation only when there is resource left over. The same strategy holds with preferential treatments of regions with lower levels of infection when quarantine is introduced.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2008.0402</identifier><identifier>PMID: 19324686</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Algorithms ; Animals ; Control Theory ; Disease Outbreaks - prevention & control ; Economic Modelling ; Epidemiological Modelling ; Humans ; Infection Control - methods ; Models, Statistical ; Models, Theoretical ; Plant Diseases - prevention & control ; Public Health ; Quarantine ; Spatio-Temporal Epidemics ; Treatment Outcome</subject><ispartof>Journal of the Royal Society interface, 2009-12, Vol.6 (41), p.1135-1144</ispartof><rights>2009 The Royal Society</rights><rights>2009 The Royal Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-bbc388555e6399c646865aff1285a8062b27824574ce07da6e1d3f29113218873</citedby><cites>FETCH-LOGICAL-c634t-bbc388555e6399c646865aff1285a8062b27824574ce07da6e1d3f29113218873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817149/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817149/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19324686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowthorn, Robert E.</creatorcontrib><creatorcontrib>Laxminarayan, Ramanan</creatorcontrib><creatorcontrib>Gilligan, Christopher A.</creatorcontrib><title>Optimal control of epidemics in metapopulations</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used if the objective is to minimize the discounted number of infected individuals during the course of an epidemic. We show, for a system with two interconnected regions and an epidemic in which infected individuals recover and can be reinfected, that equalizing infection in the two regions is the worst possible strategy in minimizing the total level of infection. Treatment should instead be preferentially directed at the region with the lower level of infection, treating the other subpopulation only when there is resource left over. The same strategy holds with preferential treatments of regions with lower levels of infection when quarantine is introduced.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Control Theory</subject><subject>Disease Outbreaks - prevention & control</subject><subject>Economic Modelling</subject><subject>Epidemiological Modelling</subject><subject>Humans</subject><subject>Infection Control - methods</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Plant Diseases - prevention & control</subject><subject>Public Health</subject><subject>Quarantine</subject><subject>Spatio-Temporal Epidemics</subject><subject>Treatment Outcome</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1rFDEYhwex2A-9epS5eZptvpMBEWytVSgUinrw8pLNJN3Umck0mbHd_94Mu-y2Bz0lL_l9vDykKN5itMCoVqcxebcgCKkFYoi8KI6wZKTiQpCXu7uqD4vjlO4QopJy_qo4xDUlTChxVJxeD6PvdFua0I8xtGVwpR18YztvUun7srOjHsIwtXr0oU-viwOn22TfbM-T4seXi-_nX6ur68tv55-uKiMoG6vl0lClOOdW0Lo2Yi7j2jlMFNcKCbIkUhHGJTMWyUYLixvqSI0xJVgpSU-Kj5vcYVp2tjE2b6dbGGJeNq4haA_PX3q_gtvwB4jCErM6B7zfBsRwP9k0QueTsW2rexumBJIyjHCNcFYuNkoTQ0rRul0LRjBDhhkyzJBhhpwN757utpdvqWYB3QhiWGdIwXg7ruEuTLHP479jq43Lp9E-7lJ1_A1CUsnhp2JwdnMmP4ubS_i1b1n529WDjxae1eXB96ONThsLAhiGDJdn14f_uuad5r-Qse5d4KY2w28c_Qtc1sHN</recordid><startdate>20091206</startdate><enddate>20091206</enddate><creator>Rowthorn, Robert E.</creator><creator>Laxminarayan, Ramanan</creator><creator>Gilligan, Christopher A.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091206</creationdate><title>Optimal control of epidemics in metapopulations</title><author>Rowthorn, Robert E. ; Laxminarayan, Ramanan ; Gilligan, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-bbc388555e6399c646865aff1285a8062b27824574ce07da6e1d3f29113218873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Control Theory</topic><topic>Disease Outbreaks - prevention & control</topic><topic>Economic Modelling</topic><topic>Epidemiological Modelling</topic><topic>Humans</topic><topic>Infection Control - methods</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Plant Diseases - prevention & control</topic><topic>Public Health</topic><topic>Quarantine</topic><topic>Spatio-Temporal Epidemics</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowthorn, Robert E.</creatorcontrib><creatorcontrib>Laxminarayan, Ramanan</creatorcontrib><creatorcontrib>Gilligan, Christopher A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowthorn, Robert E.</au><au>Laxminarayan, Ramanan</au><au>Gilligan, Christopher A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of epidemics in metapopulations</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2009-12-06</date><risdate>2009</risdate><volume>6</volume><issue>41</issue><spage>1135</spage><epage>1144</epage><pages>1135-1144</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Little is known about how best to deploy scarce resources for disease control when epidemics occur in different but interconnected regions. We use a combination of optimal control methods and epidemiological theory for metapopulations to address this problem. We consider what strategy should be used if the objective is to minimize the discounted number of infected individuals during the course of an epidemic. We show, for a system with two interconnected regions and an epidemic in which infected individuals recover and can be reinfected, that equalizing infection in the two regions is the worst possible strategy in minimizing the total level of infection. Treatment should instead be preferentially directed at the region with the lower level of infection, treating the other subpopulation only when there is resource left over. The same strategy holds with preferential treatments of regions with lower levels of infection when quarantine is introduced.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>19324686</pmid><doi>10.1098/rsif.2008.0402</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2009-12, Vol.6 (41), p.1135-1144 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_highwire_royalsociety_royinterface_6_41_1135 |
source | MEDLINE; PubMed Central |
subjects | Algorithms Animals Control Theory Disease Outbreaks - prevention & control Economic Modelling Epidemiological Modelling Humans Infection Control - methods Models, Statistical Models, Theoretical Plant Diseases - prevention & control Public Health Quarantine Spatio-Temporal Epidemics Treatment Outcome |
title | Optimal control of epidemics in metapopulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20epidemics%20in%20metapopulations&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Rowthorn,%20Robert%20E.&rft.date=2009-12-06&rft.volume=6&rft.issue=41&rft.spage=1135&rft.epage=1144&rft.pages=1135-1144&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2008.0402&rft_dat=%3Cproquest_highw%3E734101901%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734101901&rft_id=info:pmid/19324686&rfr_iscdi=true |