Synaptic Control of Motoneuronal Excitability

Departments of Neurobiology and Physiological Science, University of California, Los Angeles, California; Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Pharmacology, University of Virginia, Charlottesville, Virginia; and CNS/CV Biological Research, Schering-P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological reviews 2000-04, Vol.80 (2), p.767-852
Hauptverfasser: Rekling, Jens C, Funk, Gregory D, Bayliss, Douglas A, Dong, Xiao-Wei, Feldman, Jack L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 852
container_issue 2
container_start_page 767
container_title Physiological reviews
container_volume 80
creator Rekling, Jens C
Funk, Gregory D
Bayliss, Douglas A
Dong, Xiao-Wei
Feldman, Jack L
description Departments of Neurobiology and Physiological Science, University of California, Los Angeles, California; Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Pharmacology, University of Virginia, Charlottesville, Virginia; and CNS/CV Biological Research, Schering-Plough Research Institute, Kenilworth, New Jersey Rekling, Jens C., Gregory D. Funk, Douglas A. Bayliss, Xiao-Wei Dong, and Jack L. Feldman. Synaptic Control of Motoneuronal Excitability. Physiol. Rev. 80: 767-852, 2000. Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K + current, cationic inward current, hyperpolarization-activated inward current, Ca 2+ channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior. * Jens C. Rekling and Gregory D. Funk contributed equally to this work.
doi_str_mv 10.1152/physrev.2000.80.2.767
format Article
fullrecord <record><control><sourceid>gale_highw</sourceid><recordid>TN_cdi_highwire_physiology_physrev_80_2_767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A70745657</galeid><sourcerecordid>A70745657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6057-8d295e32a0842b7e4b33fa7e833c7722514ddcee00d5e3f059c8075927e112ef3</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSMEokvhI4BWHLhAwtiOY-eCVK1aQCriQDlbXmeSdeWNl_wpzbdnluxWBRUhHyzZv3l6evOS5CWDjDHJ3-82U9_hTcYBINOQ8UwV6lGyoD-eMs7gcbIAECwthRAnybO-vyZSykI-TU4YqFxxUIsk_Ta1djd4t1zFduhiWMZ6-SUOscWxi60Ny_Nb5we79sEP0_PkSW1Djy8O92ny_eL8avUpvfz68fPq7DJ1BUiV6oqXEgW3oHO-VpivhaitQi2EU4pzyfKqcogAFWE1yNJpULLkChnjWIvT5MOsuxvXWySUrNlgdp3f2m4y0Xrz50_rN6aJNyZXRa51QQJvDgJd_DFiP5it7x2GYFuMY28UAyiZKP8LMs20FgUj8PVf4HUcOwqoN5wVeUkHCHo3Q40NaHxbR3LnGmyRTFKktafnM0Xp0x4U4ekDOJ0Kt949xMuZd13safv1XSIMzL4V5tAKs2-F0WC4oVbQ3Kv7cd6bmmtAgJqBjW82P32Hv4V8DLGZzMUYwhXeDkfxo6zZVftNvf335NHNnZFfs9rYpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216494940</pqid></control><display><type>article</type><title>Synaptic Control of Motoneuronal Excitability</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Rekling, Jens C ; Funk, Gregory D ; Bayliss, Douglas A ; Dong, Xiao-Wei ; Feldman, Jack L</creator><creatorcontrib>Rekling, Jens C ; Funk, Gregory D ; Bayliss, Douglas A ; Dong, Xiao-Wei ; Feldman, Jack L</creatorcontrib><description>Departments of Neurobiology and Physiological Science, University of California, Los Angeles, California; Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Pharmacology, University of Virginia, Charlottesville, Virginia; and CNS/CV Biological Research, Schering-Plough Research Institute, Kenilworth, New Jersey Rekling, Jens C., Gregory D. Funk, Douglas A. Bayliss, Xiao-Wei Dong, and Jack L. Feldman. Synaptic Control of Motoneuronal Excitability. Physiol. Rev. 80: 767-852, 2000. Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K + current, cationic inward current, hyperpolarization-activated inward current, Ca 2+ channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior. * Jens C. Rekling and Gregory D. Funk contributed equally to this work.</description><identifier>ISSN: 0031-9333</identifier><identifier>EISSN: 1522-1210</identifier><identifier>DOI: 10.1152/physrev.2000.80.2.767</identifier><identifier>PMID: 10747207</identifier><identifier>CODEN: PHREA7</identifier><language>eng</language><publisher>United States: Am Physiological Soc</publisher><subject>Action Potentials - physiology ; Aged ; Anatomy &amp; physiology ; Cellular biology ; Excitation (Physiology) ; Humans ; Motor ability ; Motor neurons ; Motor Neurons - physiology ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; Nervous System - embryology ; Neural transmission ; Neurology ; Neurophysiology ; Neurotransmitter Agents - physiology ; Neurotransmitters ; Physiological aspects ; Synapses - physiology</subject><ispartof>Physiological reviews, 2000-04, Vol.80 (2), p.767-852</ispartof><rights>COPYRIGHT 2000 American Physiological Society</rights><rights>Copyright American Physiological Society Apr 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6057-8d295e32a0842b7e4b33fa7e833c7722514ddcee00d5e3f059c8075927e112ef3</citedby><cites>FETCH-LOGICAL-c6057-8d295e32a0842b7e4b33fa7e833c7722514ddcee00d5e3f059c8075927e112ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,3028,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10747207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rekling, Jens C</creatorcontrib><creatorcontrib>Funk, Gregory D</creatorcontrib><creatorcontrib>Bayliss, Douglas A</creatorcontrib><creatorcontrib>Dong, Xiao-Wei</creatorcontrib><creatorcontrib>Feldman, Jack L</creatorcontrib><title>Synaptic Control of Motoneuronal Excitability</title><title>Physiological reviews</title><addtitle>Physiol Rev</addtitle><description>Departments of Neurobiology and Physiological Science, University of California, Los Angeles, California; Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Pharmacology, University of Virginia, Charlottesville, Virginia; and CNS/CV Biological Research, Schering-Plough Research Institute, Kenilworth, New Jersey Rekling, Jens C., Gregory D. Funk, Douglas A. Bayliss, Xiao-Wei Dong, and Jack L. Feldman. Synaptic Control of Motoneuronal Excitability. Physiol. Rev. 80: 767-852, 2000. Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K + current, cationic inward current, hyperpolarization-activated inward current, Ca 2+ channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior. * Jens C. Rekling and Gregory D. Funk contributed equally to this work.</description><subject>Action Potentials - physiology</subject><subject>Aged</subject><subject>Anatomy &amp; physiology</subject><subject>Cellular biology</subject><subject>Excitation (Physiology)</subject><subject>Humans</subject><subject>Motor ability</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Nervous System - embryology</subject><subject>Neural transmission</subject><subject>Neurology</subject><subject>Neurophysiology</subject><subject>Neurotransmitter Agents - physiology</subject><subject>Neurotransmitters</subject><subject>Physiological aspects</subject><subject>Synapses - physiology</subject><issn>0031-9333</issn><issn>1522-1210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9v1DAQxSMEokvhI4BWHLhAwtiOY-eCVK1aQCriQDlbXmeSdeWNl_wpzbdnluxWBRUhHyzZv3l6evOS5CWDjDHJ3-82U9_hTcYBINOQ8UwV6lGyoD-eMs7gcbIAECwthRAnybO-vyZSykI-TU4YqFxxUIsk_Ta1djd4t1zFduhiWMZ6-SUOscWxi60Ny_Nb5we79sEP0_PkSW1Djy8O92ny_eL8avUpvfz68fPq7DJ1BUiV6oqXEgW3oHO-VpivhaitQi2EU4pzyfKqcogAFWE1yNJpULLkChnjWIvT5MOsuxvXWySUrNlgdp3f2m4y0Xrz50_rN6aJNyZXRa51QQJvDgJd_DFiP5it7x2GYFuMY28UAyiZKP8LMs20FgUj8PVf4HUcOwqoN5wVeUkHCHo3Q40NaHxbR3LnGmyRTFKktafnM0Xp0x4U4ekDOJ0Kt949xMuZd13safv1XSIMzL4V5tAKs2-F0WC4oVbQ3Kv7cd6bmmtAgJqBjW82P32Hv4V8DLGZzMUYwhXeDkfxo6zZVftNvf335NHNnZFfs9rYpg</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Rekling, Jens C</creator><creator>Funk, Gregory D</creator><creator>Bayliss, Douglas A</creator><creator>Dong, Xiao-Wei</creator><creator>Feldman, Jack L</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000401</creationdate><title>Synaptic Control of Motoneuronal Excitability</title><author>Rekling, Jens C ; Funk, Gregory D ; Bayliss, Douglas A ; Dong, Xiao-Wei ; Feldman, Jack L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6057-8d295e32a0842b7e4b33fa7e833c7722514ddcee00d5e3f059c8075927e112ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Action Potentials - physiology</topic><topic>Aged</topic><topic>Anatomy &amp; physiology</topic><topic>Cellular biology</topic><topic>Excitation (Physiology)</topic><topic>Humans</topic><topic>Motor ability</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Nervous System - embryology</topic><topic>Neural transmission</topic><topic>Neurology</topic><topic>Neurophysiology</topic><topic>Neurotransmitter Agents - physiology</topic><topic>Neurotransmitters</topic><topic>Physiological aspects</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rekling, Jens C</creatorcontrib><creatorcontrib>Funk, Gregory D</creatorcontrib><creatorcontrib>Bayliss, Douglas A</creatorcontrib><creatorcontrib>Dong, Xiao-Wei</creatorcontrib><creatorcontrib>Feldman, Jack L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rekling, Jens C</au><au>Funk, Gregory D</au><au>Bayliss, Douglas A</au><au>Dong, Xiao-Wei</au><au>Feldman, Jack L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic Control of Motoneuronal Excitability</atitle><jtitle>Physiological reviews</jtitle><addtitle>Physiol Rev</addtitle><date>2000-04-01</date><risdate>2000</risdate><volume>80</volume><issue>2</issue><spage>767</spage><epage>852</epage><pages>767-852</pages><issn>0031-9333</issn><eissn>1522-1210</eissn><coden>PHREA7</coden><abstract>Departments of Neurobiology and Physiological Science, University of California, Los Angeles, California; Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Pharmacology, University of Virginia, Charlottesville, Virginia; and CNS/CV Biological Research, Schering-Plough Research Institute, Kenilworth, New Jersey Rekling, Jens C., Gregory D. Funk, Douglas A. Bayliss, Xiao-Wei Dong, and Jack L. Feldman. Synaptic Control of Motoneuronal Excitability. Physiol. Rev. 80: 767-852, 2000. Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K + current, cationic inward current, hyperpolarization-activated inward current, Ca 2+ channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior. * Jens C. Rekling and Gregory D. Funk contributed equally to this work.</abstract><cop>United States</cop><pub>Am Physiological Soc</pub><pmid>10747207</pmid><doi>10.1152/physrev.2000.80.2.767</doi><tpages>86</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9333
ispartof Physiological reviews, 2000-04, Vol.80 (2), p.767-852
issn 0031-9333
1522-1210
language eng
recordid cdi_highwire_physiology_physrev_80_2_767
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Action Potentials - physiology
Aged
Anatomy & physiology
Cellular biology
Excitation (Physiology)
Humans
Motor ability
Motor neurons
Motor Neurons - physiology
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Nervous System - embryology
Neural transmission
Neurology
Neurophysiology
Neurotransmitter Agents - physiology
Neurotransmitters
Physiological aspects
Synapses - physiology
title Synaptic Control of Motoneuronal Excitability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20Control%20of%20Motoneuronal%20Excitability&rft.jtitle=Physiological%20reviews&rft.au=Rekling,%20Jens%20C&rft.date=2000-04-01&rft.volume=80&rft.issue=2&rft.spage=767&rft.epage=852&rft.pages=767-852&rft.issn=0031-9333&rft.eissn=1522-1210&rft.coden=PHREA7&rft_id=info:doi/10.1152/physrev.2000.80.2.767&rft_dat=%3Cgale_highw%3EA70745657%3C/gale_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216494940&rft_id=info:pmid/10747207&rft_galeid=A70745657&rfr_iscdi=true