Do Cortical Neurons Process Luminance or Contrast to Encode Surface Properties?
1 Laboratory of Experimental Ophthalmology and NeuroImaging Centre, School of Behavioural and Cognitive Neurosciences, University Medical Centre Groningen, University of Groningen, Groningen 2 Department of Human Interfaces, Netherlands Organization for Applied Scientific Research-Human Factors, Soe...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2006-04, Vol.95 (4), p.2638-2649 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2649 |
---|---|
container_issue | 4 |
container_start_page | 2638 |
container_title | Journal of neurophysiology |
container_volume | 95 |
creator | Vladusich, Tony Lucassen, Marcel P Cornelissen, Frans W |
description | 1 Laboratory of Experimental Ophthalmology and NeuroImaging Centre, School of Behavioural and Cognitive Neurosciences, University Medical Centre Groningen, University of Groningen, Groningen 2 Department of Human Interfaces, Netherlands Organization for Applied Scientific Research-Human Factors, Soesterberg, The Netherlands
Submitted 27 September 2005;
accepted in final form 25 December 2005
On the one hand, contrast signals provide information about surface properties, such as reflectance, and patchy illumination conditions, such as shadows. On the other hand, processing of luminance signals may provide information about global light levels, such as the difference between sunny and cloudy days. We devised models of contrast and luminance processing, using principles of logarithmic signal coding and half-wave rectification. We fit each model to individual response profiles obtained from 67 surface-responsive macaque V1 neurons in a center-surround paradigm similar to those used in human psychophysical studies. The most general forms of the luminance and contrast models explained, on average, 73 and 87% of the response variance over the sample population, respectively. We used a statistical technique, known as Akaike's information criterion, to quantify goodness of fit relative to number of model parameters, giving the relative probability of each model being correct. Luminance models, having fewer parameters than contrast models, performed substantially better in the vast majority of neurons, whereas contrast models performed similarly well in only a small minority of neurons. These results suggest that the processing of local and mean scene luminance predominates over contrast integration in surface-responsive neurons of the primary visual cortex. The sluggish dynamics of luminance-related cortical activity may provide a neural basis for the recent psychophysical demonstration that luminance information dominates brightness perception at low temporal frequencies.
Address for reprint requests and other correspondence: T. Vladusich, Laboratory of Experimental Ophthalmology and NeuroImaging Centre, School of Behavioural and Cognitive Neurosciences, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Groningen 9700 RB, The Netherlands (E-mail: t.vladusich{at}med.umcg.nl ) |
doi_str_mv | 10.1152/jn.01016.2005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_physiology_jn_95_4_2638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17123466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d8890e5e62886ae6198309b788ea1fc0eb63165fa34af96e06b6def8b7541d2c3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EgvIxsqJMMKWc48Z2JoRK-ZAqQKLMluNcaKo0DnYi6L_HpRVMiOms8_O-Oj2EnFIYUpoml4tmCBQoHyYA6Q4ZhF0S0zSTu2QAEN4MhDggh94vAECkkOyTA8qZpBLEgDzd2GhsXVcZXUeP2Dvb-OjZWYPeR9N-WTW6MRhZF6imc9p3UWejSWNsgdFL70odfgPfYuhAf3VM9kpdezzZziPyejuZje_j6dPdw_h6GhuWyS4upMwAU-SJlFwjp5lkkOVCStS0NIA5Z5SnpWYjXWYcgee8wFLmIh3RIjHsiJxveltn33v0nVpW3mBd6wZt7xUXQgQJ9F-QCpqwEecBjDegcdZ7h6VqXbXUbqUoqLVqtWjUt2q1Vh34s21xny-x-KW3bgPANsC8ept_VA5VO1_5ytb2baVu-7qe4WcXSrNUjVQSUqotypC6-DsVLvih2Rfhp5li</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17123466</pqid></control><display><type>article</type><title>Do Cortical Neurons Process Luminance or Contrast to Encode Surface Properties?</title><source>MEDLINE</source><source>American Physiological Society Paid</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Vladusich, Tony ; Lucassen, Marcel P ; Cornelissen, Frans W</creator><creatorcontrib>Vladusich, Tony ; Lucassen, Marcel P ; Cornelissen, Frans W</creatorcontrib><description>1 Laboratory of Experimental Ophthalmology and NeuroImaging Centre, School of Behavioural and Cognitive Neurosciences, University Medical Centre Groningen, University of Groningen, Groningen 2 Department of Human Interfaces, Netherlands Organization for Applied Scientific Research-Human Factors, Soesterberg, The Netherlands
Submitted 27 September 2005;
accepted in final form 25 December 2005
On the one hand, contrast signals provide information about surface properties, such as reflectance, and patchy illumination conditions, such as shadows. On the other hand, processing of luminance signals may provide information about global light levels, such as the difference between sunny and cloudy days. We devised models of contrast and luminance processing, using principles of logarithmic signal coding and half-wave rectification. We fit each model to individual response profiles obtained from 67 surface-responsive macaque V1 neurons in a center-surround paradigm similar to those used in human psychophysical studies. The most general forms of the luminance and contrast models explained, on average, 73 and 87% of the response variance over the sample population, respectively. We used a statistical technique, known as Akaike's information criterion, to quantify goodness of fit relative to number of model parameters, giving the relative probability of each model being correct. Luminance models, having fewer parameters than contrast models, performed substantially better in the vast majority of neurons, whereas contrast models performed similarly well in only a small minority of neurons. These results suggest that the processing of local and mean scene luminance predominates over contrast integration in surface-responsive neurons of the primary visual cortex. The sluggish dynamics of luminance-related cortical activity may provide a neural basis for the recent psychophysical demonstration that luminance information dominates brightness perception at low temporal frequencies.
Address for reprint requests and other correspondence: T. Vladusich, Laboratory of Experimental Ophthalmology and NeuroImaging Centre, School of Behavioural and Cognitive Neurosciences, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Groningen 9700 RB, The Netherlands (E-mail: t.vladusich{at}med.umcg.nl )</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.01016.2005</identifier><identifier>PMID: 16381807</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Animals ; Computer Simulation ; Contrast Sensitivity - physiology ; Evoked Potentials, Visual - physiology ; Form Perception - physiology ; Luminescence ; Macaca ; Models, Neurological ; Models, Theoretical ; Neurons, Afferent - physiology ; Probability ; Visual Cortex - physiology ; Visual Perception - physiology</subject><ispartof>Journal of neurophysiology, 2006-04, Vol.95 (4), p.2638-2649</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d8890e5e62886ae6198309b788ea1fc0eb63165fa34af96e06b6def8b7541d2c3</citedby><cites>FETCH-LOGICAL-c398t-d8890e5e62886ae6198309b788ea1fc0eb63165fa34af96e06b6def8b7541d2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16381807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vladusich, Tony</creatorcontrib><creatorcontrib>Lucassen, Marcel P</creatorcontrib><creatorcontrib>Cornelissen, Frans W</creatorcontrib><title>Do Cortical Neurons Process Luminance or Contrast to Encode Surface Properties?</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>1 Laboratory of Experimental Ophthalmology and NeuroImaging Centre, School of Behavioural and Cognitive Neurosciences, University Medical Centre Groningen, University of Groningen, Groningen 2 Department of Human Interfaces, Netherlands Organization for Applied Scientific Research-Human Factors, Soesterberg, The Netherlands
Submitted 27 September 2005;
accepted in final form 25 December 2005
On the one hand, contrast signals provide information about surface properties, such as reflectance, and patchy illumination conditions, such as shadows. On the other hand, processing of luminance signals may provide information about global light levels, such as the difference between sunny and cloudy days. We devised models of contrast and luminance processing, using principles of logarithmic signal coding and half-wave rectification. We fit each model to individual response profiles obtained from 67 surface-responsive macaque V1 neurons in a center-surround paradigm similar to those used in human psychophysical studies. The most general forms of the luminance and contrast models explained, on average, 73 and 87% of the response variance over the sample population, respectively. We used a statistical technique, known as Akaike's information criterion, to quantify goodness of fit relative to number of model parameters, giving the relative probability of each model being correct. Luminance models, having fewer parameters than contrast models, performed substantially better in the vast majority of neurons, whereas contrast models performed similarly well in only a small minority of neurons. These results suggest that the processing of local and mean scene luminance predominates over contrast integration in surface-responsive neurons of the primary visual cortex. The sluggish dynamics of luminance-related cortical activity may provide a neural basis for the recent psychophysical demonstration that luminance information dominates brightness perception at low temporal frequencies.
Address for reprint requests and other correspondence: T. Vladusich, Laboratory of Experimental Ophthalmology and NeuroImaging Centre, School of Behavioural and Cognitive Neurosciences, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Groningen 9700 RB, The Netherlands (E-mail: t.vladusich{at}med.umcg.nl )</description><subject>Animals</subject><subject>Computer Simulation</subject><subject>Contrast Sensitivity - physiology</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Form Perception - physiology</subject><subject>Luminescence</subject><subject>Macaca</subject><subject>Models, Neurological</subject><subject>Models, Theoretical</subject><subject>Neurons, Afferent - physiology</subject><subject>Probability</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EgvIxsqJMMKWc48Z2JoRK-ZAqQKLMluNcaKo0DnYi6L_HpRVMiOms8_O-Oj2EnFIYUpoml4tmCBQoHyYA6Q4ZhF0S0zSTu2QAEN4MhDggh94vAECkkOyTA8qZpBLEgDzd2GhsXVcZXUeP2Dvb-OjZWYPeR9N-WTW6MRhZF6imc9p3UWejSWNsgdFL70odfgPfYuhAf3VM9kpdezzZziPyejuZje_j6dPdw_h6GhuWyS4upMwAU-SJlFwjp5lkkOVCStS0NIA5Z5SnpWYjXWYcgee8wFLmIh3RIjHsiJxveltn33v0nVpW3mBd6wZt7xUXQgQJ9F-QCpqwEecBjDegcdZ7h6VqXbXUbqUoqLVqtWjUt2q1Vh34s21xny-x-KW3bgPANsC8ept_VA5VO1_5ytb2baVu-7qe4WcXSrNUjVQSUqotypC6-DsVLvih2Rfhp5li</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Vladusich, Tony</creator><creator>Lucassen, Marcel P</creator><creator>Cornelissen, Frans W</creator><general>Am Phys Soc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20060401</creationdate><title>Do Cortical Neurons Process Luminance or Contrast to Encode Surface Properties?</title><author>Vladusich, Tony ; Lucassen, Marcel P ; Cornelissen, Frans W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d8890e5e62886ae6198309b788ea1fc0eb63165fa34af96e06b6def8b7541d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Computer Simulation</topic><topic>Contrast Sensitivity - physiology</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Form Perception - physiology</topic><topic>Luminescence</topic><topic>Macaca</topic><topic>Models, Neurological</topic><topic>Models, Theoretical</topic><topic>Neurons, Afferent - physiology</topic><topic>Probability</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vladusich, Tony</creatorcontrib><creatorcontrib>Lucassen, Marcel P</creatorcontrib><creatorcontrib>Cornelissen, Frans W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vladusich, Tony</au><au>Lucassen, Marcel P</au><au>Cornelissen, Frans W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do Cortical Neurons Process Luminance or Contrast to Encode Surface Properties?</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>95</volume><issue>4</issue><spage>2638</spage><epage>2649</epage><pages>2638-2649</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>1 Laboratory of Experimental Ophthalmology and NeuroImaging Centre, School of Behavioural and Cognitive Neurosciences, University Medical Centre Groningen, University of Groningen, Groningen 2 Department of Human Interfaces, Netherlands Organization for Applied Scientific Research-Human Factors, Soesterberg, The Netherlands
Submitted 27 September 2005;
accepted in final form 25 December 2005
On the one hand, contrast signals provide information about surface properties, such as reflectance, and patchy illumination conditions, such as shadows. On the other hand, processing of luminance signals may provide information about global light levels, such as the difference between sunny and cloudy days. We devised models of contrast and luminance processing, using principles of logarithmic signal coding and half-wave rectification. We fit each model to individual response profiles obtained from 67 surface-responsive macaque V1 neurons in a center-surround paradigm similar to those used in human psychophysical studies. The most general forms of the luminance and contrast models explained, on average, 73 and 87% of the response variance over the sample population, respectively. We used a statistical technique, known as Akaike's information criterion, to quantify goodness of fit relative to number of model parameters, giving the relative probability of each model being correct. Luminance models, having fewer parameters than contrast models, performed substantially better in the vast majority of neurons, whereas contrast models performed similarly well in only a small minority of neurons. These results suggest that the processing of local and mean scene luminance predominates over contrast integration in surface-responsive neurons of the primary visual cortex. The sluggish dynamics of luminance-related cortical activity may provide a neural basis for the recent psychophysical demonstration that luminance information dominates brightness perception at low temporal frequencies.
Address for reprint requests and other correspondence: T. Vladusich, Laboratory of Experimental Ophthalmology and NeuroImaging Centre, School of Behavioural and Cognitive Neurosciences, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Groningen 9700 RB, The Netherlands (E-mail: t.vladusich{at}med.umcg.nl )</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>16381807</pmid><doi>10.1152/jn.01016.2005</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3077 |
ispartof | Journal of neurophysiology, 2006-04, Vol.95 (4), p.2638-2649 |
issn | 0022-3077 1522-1598 |
language | eng |
recordid | cdi_highwire_physiology_jn_95_4_2638 |
source | MEDLINE; American Physiological Society Paid; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
subjects | Animals Computer Simulation Contrast Sensitivity - physiology Evoked Potentials, Visual - physiology Form Perception - physiology Luminescence Macaca Models, Neurological Models, Theoretical Neurons, Afferent - physiology Probability Visual Cortex - physiology Visual Perception - physiology |
title | Do Cortical Neurons Process Luminance or Contrast to Encode Surface Properties? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20Cortical%20Neurons%20Process%20Luminance%20or%20Contrast%20to%20Encode%20Surface%20Properties?&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Vladusich,%20Tony&rft.date=2006-04-01&rft.volume=95&rft.issue=4&rft.spage=2638&rft.epage=2649&rft.pages=2638-2649&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.01016.2005&rft_dat=%3Cproquest_highw%3E17123466%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17123466&rft_id=info:pmid/16381807&rfr_iscdi=true |