A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation

1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California Submitted 11 August 2005; accepted in final form 12 October 2005 The goal of retinal prosthetic devices is to generate meaningful visual information in patients that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2006-02, Vol.95 (2), p.970-978
Hauptverfasser: Fried, S. I, Hsueh, H. A, Werblin, F. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 2
container_start_page 970
container_title Journal of neurophysiology
container_volume 95
creator Fried, S. I
Hsueh, H. A
Werblin, F. S
description 1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California Submitted 11 August 2005; accepted in final form 12 October 2005 The goal of retinal prosthetic devices is to generate meaningful visual information in patients that have lost outer retinal function. To accomplish this, these devices should generate patterns of ganglion cell activity that closely resemble the spatial and temporal components of those patterns that are normally elicited by light. Here, we developed a stimulus paradigm that generates precise temporal patterns of activity in retinal ganglion cells, including those patterns normally generated by light. Electrical stimulus pulses ( 1-ms duration) elicited activity in neurons distal to the ganglion cells; this resulted in ganglion cell spiking that could last as long as 100 ms. However, short pulses,
doi_str_mv 10.1152/jn.00849.2005
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_physiology_jn_95_2_970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70697091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-89fdacf05b22a4f6c5bc7a672f1ab700895c6123622931f828b7acaa1dc215643</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS0EotvCkSvyiVu2YyeOk2NVsaVSERXdni3HsTdekjjYjtr99zjsop4qTjMaf-955iH0icCaEEYv9-MaoCrqNQVgb9AqzWhGWF29RSuA1OfA-Rk6D2EPAJwBfY_OSEnzklewQvIKf9excy02zuMbPWovox13-N5rZYPGWz1Mzsse38sYtR8Ddgb_1IlJs4fJ_lrgx3CUuBC79KTwQ7TD3CcnN35A74zsg_54qhfocfN1e_0tu_txc3t9dZepoqQxq2rTSmWANZTKwpSKNYrLklNDZMPTiTVTJUlrU1rnxFS0arhUUpJWUcLKIr9AX46-k3e_Zx2iGGxQuu_lqN0cBIey5lCT_4KEFzxnZHHMjqBKhwWvjZi8HaQ_CAJiCV_sR_E3fLGEn_jPJ-O5GXT7Qp_Sfvm5s7vuyXotpu4QrOvd7rB41UxQkZZMIH0d3Mx9v9XPMSn-CcTUmvwPjZWfyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17473514</pqid></control><display><type>article</type><title>A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Fried, S. I ; Hsueh, H. A ; Werblin, F. S</creator><creatorcontrib>Fried, S. I ; Hsueh, H. A ; Werblin, F. S</creatorcontrib><description>1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California Submitted 11 August 2005; accepted in final form 12 October 2005 The goal of retinal prosthetic devices is to generate meaningful visual information in patients that have lost outer retinal function. To accomplish this, these devices should generate patterns of ganglion cell activity that closely resemble the spatial and temporal components of those patterns that are normally elicited by light. Here, we developed a stimulus paradigm that generates precise temporal patterns of activity in retinal ganglion cells, including those patterns normally generated by light. Electrical stimulus pulses ( 1-ms duration) elicited activity in neurons distal to the ganglion cells; this resulted in ganglion cell spiking that could last as long as 100 ms. However, short pulses, &lt;0.15 ms, elicited only a single spike within 0.7 ms of the leading edge of the pulse. Trains of these short pulses elicited one spike per pulse at frequencies 250 Hz. Patterns of short electrical pulses (derived from normal light elicited spike patterns) were delivered to ganglion cells and generated spike patterns that replicated the normal light patterns. Finally, we found that one spike per pulse was elicited over almost a 2.5:1 range of stimulus amplitudes. Thus a common stimulus amplitude could accommodate a 2.5:1 range of activation thresholds, e.g., caused by differences arising from cell biophysical properties or from variations in electrode-to-cell distance arising when a multielectrode array is placed on the retina. This stimulus paradigm can generate the temporal resolution required for a prosthetic device. Address for reprint requests and other correspondence: F. Werblin, 145 LSA, UC Berkeley, Berkeley, CA 94720 (E-mail: werblin{at}berkeley.edu )</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00849.2005</identifier><identifier>PMID: 16236780</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Action Potentials - physiology ; Animals ; Artificial Intelligence ; Biomimetics - methods ; Electric Stimulation - methods ; Electric Stimulation Therapy - methods ; Electrodes, Implanted ; Evoked Potentials, Visual - physiology ; Excitatory Postsynaptic Potentials - physiology ; Excitatory Postsynaptic Potentials - radiation effects ; In Vitro Techniques ; Light ; Prostheses and Implants ; Prosthesis Design ; Rabbits ; Retinal Degeneration - physiopathology ; Retinal Degeneration - rehabilitation ; Retinal Ganglion Cells - physiology ; Retinal Ganglion Cells - radiation effects ; Time Factors</subject><ispartof>Journal of neurophysiology, 2006-02, Vol.95 (2), p.970-978</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-89fdacf05b22a4f6c5bc7a672f1ab700895c6123622931f828b7acaa1dc215643</citedby><cites>FETCH-LOGICAL-c462t-89fdacf05b22a4f6c5bc7a672f1ab700895c6123622931f828b7acaa1dc215643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16236780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fried, S. I</creatorcontrib><creatorcontrib>Hsueh, H. A</creatorcontrib><creatorcontrib>Werblin, F. S</creatorcontrib><title>A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California Submitted 11 August 2005; accepted in final form 12 October 2005 The goal of retinal prosthetic devices is to generate meaningful visual information in patients that have lost outer retinal function. To accomplish this, these devices should generate patterns of ganglion cell activity that closely resemble the spatial and temporal components of those patterns that are normally elicited by light. Here, we developed a stimulus paradigm that generates precise temporal patterns of activity in retinal ganglion cells, including those patterns normally generated by light. Electrical stimulus pulses ( 1-ms duration) elicited activity in neurons distal to the ganglion cells; this resulted in ganglion cell spiking that could last as long as 100 ms. However, short pulses, &lt;0.15 ms, elicited only a single spike within 0.7 ms of the leading edge of the pulse. Trains of these short pulses elicited one spike per pulse at frequencies 250 Hz. Patterns of short electrical pulses (derived from normal light elicited spike patterns) were delivered to ganglion cells and generated spike patterns that replicated the normal light patterns. Finally, we found that one spike per pulse was elicited over almost a 2.5:1 range of stimulus amplitudes. Thus a common stimulus amplitude could accommodate a 2.5:1 range of activation thresholds, e.g., caused by differences arising from cell biophysical properties or from variations in electrode-to-cell distance arising when a multielectrode array is placed on the retina. This stimulus paradigm can generate the temporal resolution required for a prosthetic device. Address for reprint requests and other correspondence: F. Werblin, 145 LSA, UC Berkeley, Berkeley, CA 94720 (E-mail: werblin{at}berkeley.edu )</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Biomimetics - methods</subject><subject>Electric Stimulation - methods</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrodes, Implanted</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Excitatory Postsynaptic Potentials - radiation effects</subject><subject>In Vitro Techniques</subject><subject>Light</subject><subject>Prostheses and Implants</subject><subject>Prosthesis Design</subject><subject>Rabbits</subject><subject>Retinal Degeneration - physiopathology</subject><subject>Retinal Degeneration - rehabilitation</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Retinal Ganglion Cells - radiation effects</subject><subject>Time Factors</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQhS0EotvCkSvyiVu2YyeOk2NVsaVSERXdni3HsTdekjjYjtr99zjsop4qTjMaf-955iH0icCaEEYv9-MaoCrqNQVgb9AqzWhGWF29RSuA1OfA-Rk6D2EPAJwBfY_OSEnzklewQvIKf9excy02zuMbPWovox13-N5rZYPGWz1Mzsse38sYtR8Ddgb_1IlJs4fJ_lrgx3CUuBC79KTwQ7TD3CcnN35A74zsg_54qhfocfN1e_0tu_txc3t9dZepoqQxq2rTSmWANZTKwpSKNYrLklNDZMPTiTVTJUlrU1rnxFS0arhUUpJWUcLKIr9AX46-k3e_Zx2iGGxQuu_lqN0cBIey5lCT_4KEFzxnZHHMjqBKhwWvjZi8HaQ_CAJiCV_sR_E3fLGEn_jPJ-O5GXT7Qp_Sfvm5s7vuyXotpu4QrOvd7rB41UxQkZZMIH0d3Mx9v9XPMSn-CcTUmvwPjZWfyw</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Fried, S. I</creator><creator>Hsueh, H. A</creator><creator>Werblin, F. S</creator><general>Am Phys Soc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20060201</creationdate><title>A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation</title><author>Fried, S. I ; Hsueh, H. A ; Werblin, F. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-89fdacf05b22a4f6c5bc7a672f1ab700895c6123622931f828b7acaa1dc215643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Biomimetics - methods</topic><topic>Electric Stimulation - methods</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrodes, Implanted</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Excitatory Postsynaptic Potentials - radiation effects</topic><topic>In Vitro Techniques</topic><topic>Light</topic><topic>Prostheses and Implants</topic><topic>Prosthesis Design</topic><topic>Rabbits</topic><topic>Retinal Degeneration - physiopathology</topic><topic>Retinal Degeneration - rehabilitation</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Retinal Ganglion Cells - radiation effects</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fried, S. I</creatorcontrib><creatorcontrib>Hsueh, H. A</creatorcontrib><creatorcontrib>Werblin, F. S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fried, S. I</au><au>Hsueh, H. A</au><au>Werblin, F. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>95</volume><issue>2</issue><spage>970</spage><epage>978</epage><pages>970-978</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California Submitted 11 August 2005; accepted in final form 12 October 2005 The goal of retinal prosthetic devices is to generate meaningful visual information in patients that have lost outer retinal function. To accomplish this, these devices should generate patterns of ganglion cell activity that closely resemble the spatial and temporal components of those patterns that are normally elicited by light. Here, we developed a stimulus paradigm that generates precise temporal patterns of activity in retinal ganglion cells, including those patterns normally generated by light. Electrical stimulus pulses ( 1-ms duration) elicited activity in neurons distal to the ganglion cells; this resulted in ganglion cell spiking that could last as long as 100 ms. However, short pulses, &lt;0.15 ms, elicited only a single spike within 0.7 ms of the leading edge of the pulse. Trains of these short pulses elicited one spike per pulse at frequencies 250 Hz. Patterns of short electrical pulses (derived from normal light elicited spike patterns) were delivered to ganglion cells and generated spike patterns that replicated the normal light patterns. Finally, we found that one spike per pulse was elicited over almost a 2.5:1 range of stimulus amplitudes. Thus a common stimulus amplitude could accommodate a 2.5:1 range of activation thresholds, e.g., caused by differences arising from cell biophysical properties or from variations in electrode-to-cell distance arising when a multielectrode array is placed on the retina. This stimulus paradigm can generate the temporal resolution required for a prosthetic device. Address for reprint requests and other correspondence: F. Werblin, 145 LSA, UC Berkeley, Berkeley, CA 94720 (E-mail: werblin{at}berkeley.edu )</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>16236780</pmid><doi>10.1152/jn.00849.2005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2006-02, Vol.95 (2), p.970-978
issn 0022-3077
1522-1598
language eng
recordid cdi_highwire_physiology_jn_95_2_970
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Action Potentials - physiology
Animals
Artificial Intelligence
Biomimetics - methods
Electric Stimulation - methods
Electric Stimulation Therapy - methods
Electrodes, Implanted
Evoked Potentials, Visual - physiology
Excitatory Postsynaptic Potentials - physiology
Excitatory Postsynaptic Potentials - radiation effects
In Vitro Techniques
Light
Prostheses and Implants
Prosthesis Design
Rabbits
Retinal Degeneration - physiopathology
Retinal Degeneration - rehabilitation
Retinal Ganglion Cells - physiology
Retinal Ganglion Cells - radiation effects
Time Factors
title A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Generating%20Precise%20Temporal%20Patterns%20of%20Retinal%20Spiking%20Using%20Prosthetic%20Stimulation&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Fried,%20S.%20I&rft.date=2006-02-01&rft.volume=95&rft.issue=2&rft.spage=970&rft.epage=978&rft.pages=970-978&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00849.2005&rft_dat=%3Cproquest_highw%3E70697091%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17473514&rft_id=info:pmid/16236780&rfr_iscdi=true