A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation
1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California Submitted 11 August 2005; accepted in final form 12 October 2005 The goal of retinal prosthetic devices is to generate meaningful visual information in patients that...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2006-02, Vol.95 (2), p.970-978 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 978 |
---|---|
container_issue | 2 |
container_start_page | 970 |
container_title | Journal of neurophysiology |
container_volume | 95 |
creator | Fried, S. I Hsueh, H. A Werblin, F. S |
description | 1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California
Submitted 11 August 2005;
accepted in final form 12 October 2005
The goal of retinal prosthetic devices is to generate meaningful visual information in patients that have lost outer retinal function. To accomplish this, these devices should generate patterns of ganglion cell activity that closely resemble the spatial and temporal components of those patterns that are normally elicited by light. Here, we developed a stimulus paradigm that generates precise temporal patterns of activity in retinal ganglion cells, including those patterns normally generated by light. Electrical stimulus pulses ( 1-ms duration) elicited activity in neurons distal to the ganglion cells; this resulted in ganglion cell spiking that could last as long as 100 ms. However, short pulses, |
doi_str_mv | 10.1152/jn.00849.2005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_physiology_jn_95_2_970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70697091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-89fdacf05b22a4f6c5bc7a672f1ab700895c6123622931f828b7acaa1dc215643</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS0EotvCkSvyiVu2YyeOk2NVsaVSERXdni3HsTdekjjYjtr99zjsop4qTjMaf-955iH0icCaEEYv9-MaoCrqNQVgb9AqzWhGWF29RSuA1OfA-Rk6D2EPAJwBfY_OSEnzklewQvIKf9excy02zuMbPWovox13-N5rZYPGWz1Mzsse38sYtR8Ddgb_1IlJs4fJ_lrgx3CUuBC79KTwQ7TD3CcnN35A74zsg_54qhfocfN1e_0tu_txc3t9dZepoqQxq2rTSmWANZTKwpSKNYrLklNDZMPTiTVTJUlrU1rnxFS0arhUUpJWUcLKIr9AX46-k3e_Zx2iGGxQuu_lqN0cBIey5lCT_4KEFzxnZHHMjqBKhwWvjZi8HaQ_CAJiCV_sR_E3fLGEn_jPJ-O5GXT7Qp_Sfvm5s7vuyXotpu4QrOvd7rB41UxQkZZMIH0d3Mx9v9XPMSn-CcTUmvwPjZWfyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17473514</pqid></control><display><type>article</type><title>A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Fried, S. I ; Hsueh, H. A ; Werblin, F. S</creator><creatorcontrib>Fried, S. I ; Hsueh, H. A ; Werblin, F. S</creatorcontrib><description>1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California
Submitted 11 August 2005;
accepted in final form 12 October 2005
The goal of retinal prosthetic devices is to generate meaningful visual information in patients that have lost outer retinal function. To accomplish this, these devices should generate patterns of ganglion cell activity that closely resemble the spatial and temporal components of those patterns that are normally elicited by light. Here, we developed a stimulus paradigm that generates precise temporal patterns of activity in retinal ganglion cells, including those patterns normally generated by light. Electrical stimulus pulses ( 1-ms duration) elicited activity in neurons distal to the ganglion cells; this resulted in ganglion cell spiking that could last as long as 100 ms. However, short pulses, <0.15 ms, elicited only a single spike within 0.7 ms of the leading edge of the pulse. Trains of these short pulses elicited one spike per pulse at frequencies 250 Hz. Patterns of short electrical pulses (derived from normal light elicited spike patterns) were delivered to ganglion cells and generated spike patterns that replicated the normal light patterns. Finally, we found that one spike per pulse was elicited over almost a 2.5:1 range of stimulus amplitudes. Thus a common stimulus amplitude could accommodate a 2.5:1 range of activation thresholds, e.g., caused by differences arising from cell biophysical properties or from variations in electrode-to-cell distance arising when a multielectrode array is placed on the retina. This stimulus paradigm can generate the temporal resolution required for a prosthetic device.
Address for reprint requests and other correspondence: F. Werblin, 145 LSA, UC Berkeley, Berkeley, CA 94720 (E-mail: werblin{at}berkeley.edu )</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00849.2005</identifier><identifier>PMID: 16236780</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Action Potentials - physiology ; Animals ; Artificial Intelligence ; Biomimetics - methods ; Electric Stimulation - methods ; Electric Stimulation Therapy - methods ; Electrodes, Implanted ; Evoked Potentials, Visual - physiology ; Excitatory Postsynaptic Potentials - physiology ; Excitatory Postsynaptic Potentials - radiation effects ; In Vitro Techniques ; Light ; Prostheses and Implants ; Prosthesis Design ; Rabbits ; Retinal Degeneration - physiopathology ; Retinal Degeneration - rehabilitation ; Retinal Ganglion Cells - physiology ; Retinal Ganglion Cells - radiation effects ; Time Factors</subject><ispartof>Journal of neurophysiology, 2006-02, Vol.95 (2), p.970-978</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-89fdacf05b22a4f6c5bc7a672f1ab700895c6123622931f828b7acaa1dc215643</citedby><cites>FETCH-LOGICAL-c462t-89fdacf05b22a4f6c5bc7a672f1ab700895c6123622931f828b7acaa1dc215643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16236780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fried, S. I</creatorcontrib><creatorcontrib>Hsueh, H. A</creatorcontrib><creatorcontrib>Werblin, F. S</creatorcontrib><title>A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California
Submitted 11 August 2005;
accepted in final form 12 October 2005
The goal of retinal prosthetic devices is to generate meaningful visual information in patients that have lost outer retinal function. To accomplish this, these devices should generate patterns of ganglion cell activity that closely resemble the spatial and temporal components of those patterns that are normally elicited by light. Here, we developed a stimulus paradigm that generates precise temporal patterns of activity in retinal ganglion cells, including those patterns normally generated by light. Electrical stimulus pulses ( 1-ms duration) elicited activity in neurons distal to the ganglion cells; this resulted in ganglion cell spiking that could last as long as 100 ms. However, short pulses, <0.15 ms, elicited only a single spike within 0.7 ms of the leading edge of the pulse. Trains of these short pulses elicited one spike per pulse at frequencies 250 Hz. Patterns of short electrical pulses (derived from normal light elicited spike patterns) were delivered to ganglion cells and generated spike patterns that replicated the normal light patterns. Finally, we found that one spike per pulse was elicited over almost a 2.5:1 range of stimulus amplitudes. Thus a common stimulus amplitude could accommodate a 2.5:1 range of activation thresholds, e.g., caused by differences arising from cell biophysical properties or from variations in electrode-to-cell distance arising when a multielectrode array is placed on the retina. This stimulus paradigm can generate the temporal resolution required for a prosthetic device.
Address for reprint requests and other correspondence: F. Werblin, 145 LSA, UC Berkeley, Berkeley, CA 94720 (E-mail: werblin{at}berkeley.edu )</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Biomimetics - methods</subject><subject>Electric Stimulation - methods</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrodes, Implanted</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Excitatory Postsynaptic Potentials - radiation effects</subject><subject>In Vitro Techniques</subject><subject>Light</subject><subject>Prostheses and Implants</subject><subject>Prosthesis Design</subject><subject>Rabbits</subject><subject>Retinal Degeneration - physiopathology</subject><subject>Retinal Degeneration - rehabilitation</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Retinal Ganglion Cells - radiation effects</subject><subject>Time Factors</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQhS0EotvCkSvyiVu2YyeOk2NVsaVSERXdni3HsTdekjjYjtr99zjsop4qTjMaf-955iH0icCaEEYv9-MaoCrqNQVgb9AqzWhGWF29RSuA1OfA-Rk6D2EPAJwBfY_OSEnzklewQvIKf9excy02zuMbPWovox13-N5rZYPGWz1Mzsse38sYtR8Ddgb_1IlJs4fJ_lrgx3CUuBC79KTwQ7TD3CcnN35A74zsg_54qhfocfN1e_0tu_txc3t9dZepoqQxq2rTSmWANZTKwpSKNYrLklNDZMPTiTVTJUlrU1rnxFS0arhUUpJWUcLKIr9AX46-k3e_Zx2iGGxQuu_lqN0cBIey5lCT_4KEFzxnZHHMjqBKhwWvjZi8HaQ_CAJiCV_sR_E3fLGEn_jPJ-O5GXT7Qp_Sfvm5s7vuyXotpu4QrOvd7rB41UxQkZZMIH0d3Mx9v9XPMSn-CcTUmvwPjZWfyw</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Fried, S. I</creator><creator>Hsueh, H. A</creator><creator>Werblin, F. S</creator><general>Am Phys Soc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20060201</creationdate><title>A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation</title><author>Fried, S. I ; Hsueh, H. A ; Werblin, F. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-89fdacf05b22a4f6c5bc7a672f1ab700895c6123622931f828b7acaa1dc215643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Biomimetics - methods</topic><topic>Electric Stimulation - methods</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrodes, Implanted</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Excitatory Postsynaptic Potentials - radiation effects</topic><topic>In Vitro Techniques</topic><topic>Light</topic><topic>Prostheses and Implants</topic><topic>Prosthesis Design</topic><topic>Rabbits</topic><topic>Retinal Degeneration - physiopathology</topic><topic>Retinal Degeneration - rehabilitation</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Retinal Ganglion Cells - radiation effects</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fried, S. I</creatorcontrib><creatorcontrib>Hsueh, H. A</creatorcontrib><creatorcontrib>Werblin, F. S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fried, S. I</au><au>Hsueh, H. A</au><au>Werblin, F. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>95</volume><issue>2</issue><spage>970</spage><epage>978</epage><pages>970-978</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>1 Departments of Vision Science and 2 Bioengineering and Molecular and 3 Cell Biology, University of California, Berkeley, California
Submitted 11 August 2005;
accepted in final form 12 October 2005
The goal of retinal prosthetic devices is to generate meaningful visual information in patients that have lost outer retinal function. To accomplish this, these devices should generate patterns of ganglion cell activity that closely resemble the spatial and temporal components of those patterns that are normally elicited by light. Here, we developed a stimulus paradigm that generates precise temporal patterns of activity in retinal ganglion cells, including those patterns normally generated by light. Electrical stimulus pulses ( 1-ms duration) elicited activity in neurons distal to the ganglion cells; this resulted in ganglion cell spiking that could last as long as 100 ms. However, short pulses, <0.15 ms, elicited only a single spike within 0.7 ms of the leading edge of the pulse. Trains of these short pulses elicited one spike per pulse at frequencies 250 Hz. Patterns of short electrical pulses (derived from normal light elicited spike patterns) were delivered to ganglion cells and generated spike patterns that replicated the normal light patterns. Finally, we found that one spike per pulse was elicited over almost a 2.5:1 range of stimulus amplitudes. Thus a common stimulus amplitude could accommodate a 2.5:1 range of activation thresholds, e.g., caused by differences arising from cell biophysical properties or from variations in electrode-to-cell distance arising when a multielectrode array is placed on the retina. This stimulus paradigm can generate the temporal resolution required for a prosthetic device.
Address for reprint requests and other correspondence: F. Werblin, 145 LSA, UC Berkeley, Berkeley, CA 94720 (E-mail: werblin{at}berkeley.edu )</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>16236780</pmid><doi>10.1152/jn.00849.2005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3077 |
ispartof | Journal of neurophysiology, 2006-02, Vol.95 (2), p.970-978 |
issn | 0022-3077 1522-1598 |
language | eng |
recordid | cdi_highwire_physiology_jn_95_2_970 |
source | MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Action Potentials - physiology Animals Artificial Intelligence Biomimetics - methods Electric Stimulation - methods Electric Stimulation Therapy - methods Electrodes, Implanted Evoked Potentials, Visual - physiology Excitatory Postsynaptic Potentials - physiology Excitatory Postsynaptic Potentials - radiation effects In Vitro Techniques Light Prostheses and Implants Prosthesis Design Rabbits Retinal Degeneration - physiopathology Retinal Degeneration - rehabilitation Retinal Ganglion Cells - physiology Retinal Ganglion Cells - radiation effects Time Factors |
title | A Method for Generating Precise Temporal Patterns of Retinal Spiking Using Prosthetic Stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Generating%20Precise%20Temporal%20Patterns%20of%20Retinal%20Spiking%20Using%20Prosthetic%20Stimulation&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Fried,%20S.%20I&rft.date=2006-02-01&rft.volume=95&rft.issue=2&rft.spage=970&rft.epage=978&rft.pages=970-978&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00849.2005&rft_dat=%3Cproquest_highw%3E70697091%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17473514&rft_id=info:pmid/16236780&rfr_iscdi=true |