Sensory Neurons From Nf1 Haploinsufficient Mice Exhibit Increased Excitability
1 Departments of Pharmacology and Toxicology, 2 Pediatrics, 3 Microbiology and Immunology, and 4 Neurology, Indiana University School of Medicine, Indianapolis, Indiana Submitted 11 May 2005; accepted in final form 22 July 2005 Neurofibromatosis type 1 (NF1) is a common genetic disorder characterize...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2005-12, Vol.94 (6), p.3670-3676 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3676 |
---|---|
container_issue | 6 |
container_start_page | 3670 |
container_title | Journal of neurophysiology |
container_volume | 94 |
creator | Wang, Yue Nicol, G. D Clapp, D. Wade Hingtgen, Cynthia M |
description | 1 Departments of Pharmacology and Toxicology, 2 Pediatrics, 3 Microbiology and Immunology, and 4 Neurology, Indiana University School of Medicine, Indianapolis, Indiana
Submitted 11 May 2005;
accepted in final form 22 July 2005
Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by tumor formation. People with NF1 also can experience more intense painful responses to stimuli, such as minor trauma, than normal. NF1 results from a heterozygous mutation of the NF1 gene, leading to decreased levels of neurofibromin, the protein product of the NF1 gene. Neurofibromin is a guanosine triphosphatase activating protein (GAP) for Ras and accelerates the conversion of active Ras-GTP to inactive Ras-GDP; therefore mutation of the NF1 gene frequently results in an increase in activity of the Ras transduction cascade. Using patch-clamp electrophysiological techniques, we examined the excitability of capsaicin-sensitive sensory neurons isolated from the dorsal root ganglia of adult mice with a heterozygous mutation of the Nf1 gene ( Nf1+/) , analogous to the human mutation, in comparison to wildtype sensory neurons. Sensory neurons from adult Nf1+/ mice generated a more than twofold higher number of action potentials in response to a ramp of depolarizing current as wild-type neurons. Consistent with the greater number of action potentials, Nf1+/ neurons had lower firing thresholds, lower rheobase currents, and shorter firing latencies than wild-type neurons. Interestingly, nerve growth factor augmented the excitability of wild-type neurons in a concentration-related manner but did not further alter the excitability of the Nf1+/ sensory neurons. These data clearly suggest that GAPs, such as neurofibromin, can play a key role in the excitability of nociceptive sensory neurons. This increased excitability may explain the painful conditions experienced by people with NF1.
Address for reprint requests and other correspondence: C. M. Hingtgen, Stark Neurosciences Research Institute, Indiana University School of Medicine, 450 W. Walnut St., R2-466, Indianapolis, IN 46202 (E-mail: chingtge{at}iupui.edu ) |
doi_str_mv | 10.1152/jn.00489.2005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_physiology_jn_94_6_3670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19380641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-9f230fae1879d9357a7ccfc47b2766e8ef602d82ae43ca4c5b4cc15ab475e3b33</originalsourceid><addsrcrecordid>eNp1kDFP5DAQhS0Egj2gpEWpoMoyjp04KRFiAQmWAqgtxxmzXmXjYCeC_PsztyuobpoZPX3vafQIOaMwpzTPrtbdHICX1TwDyPfILGpZSvOq3CczgHgzEOKI_AlhDQAih-yQHNECKhZnRpYv2AXnp2SJo3ddSBbebZKlocm96ltnuzAaY7XFbkierMbk9mtlazskD532qAI2UdF2ULVt7TCdkAOj2oCnu31M3ha3rzf36ePz3cPN9WOqORNDWpmMgVFIS1E1FcuFElobzUWdiaLAEk0BWVNmCjnTiuu85lrTXNVc5Mhqxo7JxTa39-5jxDDIjQ0a21Z16MYgacVKKDiNYLoFtXcheDSy93aj_CQpyO8C5bqT_wqU3wVG_nwXPNYbbH7pXWMRYFtgZd9Xn9aj7FdTsK5175NcjG37il9DDK24LCQrBMi-MdF1-X9X_OCHZn8Bj7yMdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19380641</pqid></control><display><type>article</type><title>Sensory Neurons From Nf1 Haploinsufficient Mice Exhibit Increased Excitability</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Yue ; Nicol, G. D ; Clapp, D. Wade ; Hingtgen, Cynthia M</creator><creatorcontrib>Wang, Yue ; Nicol, G. D ; Clapp, D. Wade ; Hingtgen, Cynthia M</creatorcontrib><description>1 Departments of Pharmacology and Toxicology, 2 Pediatrics, 3 Microbiology and Immunology, and 4 Neurology, Indiana University School of Medicine, Indianapolis, Indiana
Submitted 11 May 2005;
accepted in final form 22 July 2005
Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by tumor formation. People with NF1 also can experience more intense painful responses to stimuli, such as minor trauma, than normal. NF1 results from a heterozygous mutation of the NF1 gene, leading to decreased levels of neurofibromin, the protein product of the NF1 gene. Neurofibromin is a guanosine triphosphatase activating protein (GAP) for Ras and accelerates the conversion of active Ras-GTP to inactive Ras-GDP; therefore mutation of the NF1 gene frequently results in an increase in activity of the Ras transduction cascade. Using patch-clamp electrophysiological techniques, we examined the excitability of capsaicin-sensitive sensory neurons isolated from the dorsal root ganglia of adult mice with a heterozygous mutation of the Nf1 gene ( Nf1+/) , analogous to the human mutation, in comparison to wildtype sensory neurons. Sensory neurons from adult Nf1+/ mice generated a more than twofold higher number of action potentials in response to a ramp of depolarizing current as wild-type neurons. Consistent with the greater number of action potentials, Nf1+/ neurons had lower firing thresholds, lower rheobase currents, and shorter firing latencies than wild-type neurons. Interestingly, nerve growth factor augmented the excitability of wild-type neurons in a concentration-related manner but did not further alter the excitability of the Nf1+/ sensory neurons. These data clearly suggest that GAPs, such as neurofibromin, can play a key role in the excitability of nociceptive sensory neurons. This increased excitability may explain the painful conditions experienced by people with NF1.
Address for reprint requests and other correspondence: C. M. Hingtgen, Stark Neurosciences Research Institute, Indiana University School of Medicine, 450 W. Walnut St., R2-466, Indianapolis, IN 46202 (E-mail: chingtge{at}iupui.edu )</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00489.2005</identifier><identifier>PMID: 16093333</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Action Potentials - genetics ; Action Potentials - physiology ; Action Potentials - radiation effects ; Analysis of Variance ; Animals ; Capsaicin - pharmacology ; Dose-Response Relationship, Drug ; Dose-Response Relationship, Radiation ; Electric Stimulation - methods ; Ganglia, Spinal - cytology ; In Vitro Techniques ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Nerve Growth Factor - pharmacology ; Neurofibromatosis 1 - genetics ; Neurons, Afferent - drug effects ; Neurons, Afferent - physiology ; Neurons, Afferent - radiation effects ; Patch-Clamp Techniques - methods ; Reaction Time - drug effects ; Reaction Time - physiology ; Reaction Time - radiation effects</subject><ispartof>Journal of neurophysiology, 2005-12, Vol.94 (6), p.3670-3676</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-9f230fae1879d9357a7ccfc47b2766e8ef602d82ae43ca4c5b4cc15ab475e3b33</citedby><cites>FETCH-LOGICAL-c437t-9f230fae1879d9357a7ccfc47b2766e8ef602d82ae43ca4c5b4cc15ab475e3b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3040,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16093333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Nicol, G. D</creatorcontrib><creatorcontrib>Clapp, D. Wade</creatorcontrib><creatorcontrib>Hingtgen, Cynthia M</creatorcontrib><title>Sensory Neurons From Nf1 Haploinsufficient Mice Exhibit Increased Excitability</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>1 Departments of Pharmacology and Toxicology, 2 Pediatrics, 3 Microbiology and Immunology, and 4 Neurology, Indiana University School of Medicine, Indianapolis, Indiana
Submitted 11 May 2005;
accepted in final form 22 July 2005
Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by tumor formation. People with NF1 also can experience more intense painful responses to stimuli, such as minor trauma, than normal. NF1 results from a heterozygous mutation of the NF1 gene, leading to decreased levels of neurofibromin, the protein product of the NF1 gene. Neurofibromin is a guanosine triphosphatase activating protein (GAP) for Ras and accelerates the conversion of active Ras-GTP to inactive Ras-GDP; therefore mutation of the NF1 gene frequently results in an increase in activity of the Ras transduction cascade. Using patch-clamp electrophysiological techniques, we examined the excitability of capsaicin-sensitive sensory neurons isolated from the dorsal root ganglia of adult mice with a heterozygous mutation of the Nf1 gene ( Nf1+/) , analogous to the human mutation, in comparison to wildtype sensory neurons. Sensory neurons from adult Nf1+/ mice generated a more than twofold higher number of action potentials in response to a ramp of depolarizing current as wild-type neurons. Consistent with the greater number of action potentials, Nf1+/ neurons had lower firing thresholds, lower rheobase currents, and shorter firing latencies than wild-type neurons. Interestingly, nerve growth factor augmented the excitability of wild-type neurons in a concentration-related manner but did not further alter the excitability of the Nf1+/ sensory neurons. These data clearly suggest that GAPs, such as neurofibromin, can play a key role in the excitability of nociceptive sensory neurons. This increased excitability may explain the painful conditions experienced by people with NF1.
Address for reprint requests and other correspondence: C. M. Hingtgen, Stark Neurosciences Research Institute, Indiana University School of Medicine, 450 W. Walnut St., R2-466, Indianapolis, IN 46202 (E-mail: chingtge{at}iupui.edu )</description><subject>Action Potentials - genetics</subject><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Capsaicin - pharmacology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Electric Stimulation - methods</subject><subject>Ganglia, Spinal - cytology</subject><subject>In Vitro Techniques</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Mutation</subject><subject>Nerve Growth Factor - pharmacology</subject><subject>Neurofibromatosis 1 - genetics</subject><subject>Neurons, Afferent - drug effects</subject><subject>Neurons, Afferent - physiology</subject><subject>Neurons, Afferent - radiation effects</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Reaction Time - drug effects</subject><subject>Reaction Time - physiology</subject><subject>Reaction Time - radiation effects</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDFP5DAQhS0Egj2gpEWpoMoyjp04KRFiAQmWAqgtxxmzXmXjYCeC_PsztyuobpoZPX3vafQIOaMwpzTPrtbdHICX1TwDyPfILGpZSvOq3CczgHgzEOKI_AlhDQAih-yQHNECKhZnRpYv2AXnp2SJo3ddSBbebZKlocm96ltnuzAaY7XFbkierMbk9mtlazskD532qAI2UdF2ULVt7TCdkAOj2oCnu31M3ha3rzf36ePz3cPN9WOqORNDWpmMgVFIS1E1FcuFElobzUWdiaLAEk0BWVNmCjnTiuu85lrTXNVc5Mhqxo7JxTa39-5jxDDIjQ0a21Z16MYgacVKKDiNYLoFtXcheDSy93aj_CQpyO8C5bqT_wqU3wVG_nwXPNYbbH7pXWMRYFtgZd9Xn9aj7FdTsK5175NcjG37il9DDK24LCQrBMi-MdF1-X9X_OCHZn8Bj7yMdA</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Wang, Yue</creator><creator>Nicol, G. D</creator><creator>Clapp, D. Wade</creator><creator>Hingtgen, Cynthia M</creator><general>Am Phys Soc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20051201</creationdate><title>Sensory Neurons From Nf1 Haploinsufficient Mice Exhibit Increased Excitability</title><author>Wang, Yue ; Nicol, G. D ; Clapp, D. Wade ; Hingtgen, Cynthia M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-9f230fae1879d9357a7ccfc47b2766e8ef602d82ae43ca4c5b4cc15ab475e3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Action Potentials - genetics</topic><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Capsaicin - pharmacology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Electric Stimulation - methods</topic><topic>Ganglia, Spinal - cytology</topic><topic>In Vitro Techniques</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Mutation</topic><topic>Nerve Growth Factor - pharmacology</topic><topic>Neurofibromatosis 1 - genetics</topic><topic>Neurons, Afferent - drug effects</topic><topic>Neurons, Afferent - physiology</topic><topic>Neurons, Afferent - radiation effects</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Reaction Time - drug effects</topic><topic>Reaction Time - physiology</topic><topic>Reaction Time - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Nicol, G. D</creatorcontrib><creatorcontrib>Clapp, D. Wade</creatorcontrib><creatorcontrib>Hingtgen, Cynthia M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yue</au><au>Nicol, G. D</au><au>Clapp, D. Wade</au><au>Hingtgen, Cynthia M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensory Neurons From Nf1 Haploinsufficient Mice Exhibit Increased Excitability</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>94</volume><issue>6</issue><spage>3670</spage><epage>3676</epage><pages>3670-3676</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>1 Departments of Pharmacology and Toxicology, 2 Pediatrics, 3 Microbiology and Immunology, and 4 Neurology, Indiana University School of Medicine, Indianapolis, Indiana
Submitted 11 May 2005;
accepted in final form 22 July 2005
Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by tumor formation. People with NF1 also can experience more intense painful responses to stimuli, such as minor trauma, than normal. NF1 results from a heterozygous mutation of the NF1 gene, leading to decreased levels of neurofibromin, the protein product of the NF1 gene. Neurofibromin is a guanosine triphosphatase activating protein (GAP) for Ras and accelerates the conversion of active Ras-GTP to inactive Ras-GDP; therefore mutation of the NF1 gene frequently results in an increase in activity of the Ras transduction cascade. Using patch-clamp electrophysiological techniques, we examined the excitability of capsaicin-sensitive sensory neurons isolated from the dorsal root ganglia of adult mice with a heterozygous mutation of the Nf1 gene ( Nf1+/) , analogous to the human mutation, in comparison to wildtype sensory neurons. Sensory neurons from adult Nf1+/ mice generated a more than twofold higher number of action potentials in response to a ramp of depolarizing current as wild-type neurons. Consistent with the greater number of action potentials, Nf1+/ neurons had lower firing thresholds, lower rheobase currents, and shorter firing latencies than wild-type neurons. Interestingly, nerve growth factor augmented the excitability of wild-type neurons in a concentration-related manner but did not further alter the excitability of the Nf1+/ sensory neurons. These data clearly suggest that GAPs, such as neurofibromin, can play a key role in the excitability of nociceptive sensory neurons. This increased excitability may explain the painful conditions experienced by people with NF1.
Address for reprint requests and other correspondence: C. M. Hingtgen, Stark Neurosciences Research Institute, Indiana University School of Medicine, 450 W. Walnut St., R2-466, Indianapolis, IN 46202 (E-mail: chingtge{at}iupui.edu )</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>16093333</pmid><doi>10.1152/jn.00489.2005</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3077 |
ispartof | Journal of neurophysiology, 2005-12, Vol.94 (6), p.3670-3676 |
issn | 0022-3077 1522-1598 |
language | eng |
recordid | cdi_highwire_physiology_jn_94_6_3670 |
source | MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Action Potentials - genetics Action Potentials - physiology Action Potentials - radiation effects Analysis of Variance Animals Capsaicin - pharmacology Dose-Response Relationship, Drug Dose-Response Relationship, Radiation Electric Stimulation - methods Ganglia, Spinal - cytology In Vitro Techniques Mice Mice, Inbred C57BL Mice, Transgenic Mutation Nerve Growth Factor - pharmacology Neurofibromatosis 1 - genetics Neurons, Afferent - drug effects Neurons, Afferent - physiology Neurons, Afferent - radiation effects Patch-Clamp Techniques - methods Reaction Time - drug effects Reaction Time - physiology Reaction Time - radiation effects |
title | Sensory Neurons From Nf1 Haploinsufficient Mice Exhibit Increased Excitability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensory%20Neurons%20From%20Nf1%20Haploinsufficient%20Mice%20Exhibit%20Increased%20Excitability&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Wang,%20Yue&rft.date=2005-12-01&rft.volume=94&rft.issue=6&rft.spage=3670&rft.epage=3676&rft.pages=3670-3676&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00489.2005&rft_dat=%3Cproquest_highw%3E19380641%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19380641&rft_id=info:pmid/16093333&rfr_iscdi=true |