Axonal Na+ Channels Ensure Fast Spike Activation and Back-Propagation in Cerebellar Granule Cells

1 Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, Italy; 2 Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Pavia Unit, Pavia, Italy; 3 Department of Mathematics, University of Milan, Milan, Italy; 4 and Department of Biological Scien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2009-02, Vol.101 (2), p.519-532
Hauptverfasser: Diwakar, Shyam, Magistretti, Jacopo, Goldfarb, Mitchell, Naldi, Giovanni, D'Angelo, Egidio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 2
container_start_page 519
container_title Journal of neurophysiology
container_volume 101
creator Diwakar, Shyam
Magistretti, Jacopo
Goldfarb, Mitchell
Naldi, Giovanni
D'Angelo, Egidio
description 1 Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, Italy; 2 Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Pavia Unit, Pavia, Italy; 3 Department of Mathematics, University of Milan, Milan, Italy; 4 and Department of Biological Sciences, Hunter College of City University, New York, New York Submitted 20 March 2008; accepted in final form 19 November 2008 In most neurons, Na + channels in the axon are complemented by others localized in the soma and dendrites to ensure spike back-propagation. However, cerebellar granule cells are neurons with simplified architecture in which the dendrites are short and unbranched and a single thin ascending axon travels toward the molecular layer before bifurcating into parallel fibers. Here we show that in cerebellar granule cells, Na + channels are enriched in the axon, especially in the hillock, but almost absent from soma and dendrites. The impact of this channel distribution on neuronal electroresponsiveness was investigated by multi-compartmental modeling. Numerical simulations indicated that granule cells have a compact electrotonic structure allowing excitatory postsynaptic potentials to diffuse with little attenuation from dendrites to axon. The spike arose almost simultaneously along the whole axonal ascending branch and invaded the hillock the activation of which promoted spike back-propagation with marginal delay (
doi_str_mv 10.1152/jn.90382.2008
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_physiology_jn_101_2_519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66890717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-eb7b92aecdbc9f2d3ea7c36927f95af577cc81177908cfe645cac1b4575e5d623</originalsourceid><addsrcrecordid>eNp1kcFv0zAUxi0EYmVw5Ip8ggNKsZ06ji9IpVq3SRMgMc6W47w07lw72MlY_3tcWg04cLL1-fe-5_c-hF5TMqeUsw9bP5ekrNmcEVI_QbOssYJyWT9FM0LyvSRCnKEXKW0JIYIT9hydUUlEWdNqhvTyIXjt8Gf9Hq967T24hC98miLgtU4j_jbYO8BLM9p7PdrgsfYt_qTNXfE1hkFvjqL1eAURGnBOR3wZtZ8cZMm59BI967RL8Op0nqPv64vb1VVx8-XyerW8KQxnYiygEY1kGkzbGNmxtgQtTFlJJjrJdceFMKamVAhJatNBteBGG9osuODA24qV5-jj0XeYmh20BvwYtVNDtDsd9ypoq_598bZXm3CvWMUF4Yts8PZkEMOPCdKodjaZw0QewpRUVdV5bVRksDiCJoaUInSPTShRh1DU1qvfoahDKJl_8_fP_tCnFDLw7gj0dtP_tBHU0O-TDS5s9gcvSqhiilOZyfL_5Hpy7hYexlzyWKGGtit_AZ5sqds</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66890717</pqid></control><display><type>article</type><title>Axonal Na+ Channels Ensure Fast Spike Activation and Back-Propagation in Cerebellar Granule Cells</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Diwakar, Shyam ; Magistretti, Jacopo ; Goldfarb, Mitchell ; Naldi, Giovanni ; D'Angelo, Egidio</creator><creatorcontrib>Diwakar, Shyam ; Magistretti, Jacopo ; Goldfarb, Mitchell ; Naldi, Giovanni ; D'Angelo, Egidio</creatorcontrib><description>1 Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, Italy; 2 Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Pavia Unit, Pavia, Italy; 3 Department of Mathematics, University of Milan, Milan, Italy; 4 and Department of Biological Sciences, Hunter College of City University, New York, New York Submitted 20 March 2008; accepted in final form 19 November 2008 In most neurons, Na + channels in the axon are complemented by others localized in the soma and dendrites to ensure spike back-propagation. However, cerebellar granule cells are neurons with simplified architecture in which the dendrites are short and unbranched and a single thin ascending axon travels toward the molecular layer before bifurcating into parallel fibers. Here we show that in cerebellar granule cells, Na + channels are enriched in the axon, especially in the hillock, but almost absent from soma and dendrites. The impact of this channel distribution on neuronal electroresponsiveness was investigated by multi-compartmental modeling. Numerical simulations indicated that granule cells have a compact electrotonic structure allowing excitatory postsynaptic potentials to diffuse with little attenuation from dendrites to axon. The spike arose almost simultaneously along the whole axonal ascending branch and invaded the hillock the activation of which promoted spike back-propagation with marginal delay (&lt;200 µs) and attenuation (&lt;20 mV) into the somato-dendritic compartment. These properties allow granule cells to perform sub-millisecond coincidence detection of pre- and postsynaptic activity and to rapidly activate Purkinje cells contacted by the axonal ascending branch. Address for reprint requests and other correspondence: E. D'Angelo, Dept. of Physiological and Pharmacological Sciences, Via Forlanini 6, University of Pavia, I-27100 Pavia, Italy (E-mail dangelo{at}unipv.it )</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.90382.2008</identifier><identifier>PMID: 19073816</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Action Potentials - physiology ; Animals ; Animals, Newborn ; Axons - physiology ; Biophysical Phenomena ; Cerebellum - cytology ; Electric Capacitance ; Electric Stimulation - methods ; Excitatory Amino Acid Agonists - pharmacology ; In Vitro Techniques ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Membrane Potentials - physiology ; Mice ; Models, Neurological ; N-Methylaspartate - pharmacology ; Neurons - cytology ; Neurons - physiology ; Patch-Clamp Techniques ; Sodium Channels - physiology ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology</subject><ispartof>Journal of neurophysiology, 2009-02, Vol.101 (2), p.519-532</ispartof><rights>Copyright © 2009, American Physiological Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-eb7b92aecdbc9f2d3ea7c36927f95af577cc81177908cfe645cac1b4575e5d623</citedby><cites>FETCH-LOGICAL-c527t-eb7b92aecdbc9f2d3ea7c36927f95af577cc81177908cfe645cac1b4575e5d623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,3040,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19073816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diwakar, Shyam</creatorcontrib><creatorcontrib>Magistretti, Jacopo</creatorcontrib><creatorcontrib>Goldfarb, Mitchell</creatorcontrib><creatorcontrib>Naldi, Giovanni</creatorcontrib><creatorcontrib>D'Angelo, Egidio</creatorcontrib><title>Axonal Na+ Channels Ensure Fast Spike Activation and Back-Propagation in Cerebellar Granule Cells</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>1 Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, Italy; 2 Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Pavia Unit, Pavia, Italy; 3 Department of Mathematics, University of Milan, Milan, Italy; 4 and Department of Biological Sciences, Hunter College of City University, New York, New York Submitted 20 March 2008; accepted in final form 19 November 2008 In most neurons, Na + channels in the axon are complemented by others localized in the soma and dendrites to ensure spike back-propagation. However, cerebellar granule cells are neurons with simplified architecture in which the dendrites are short and unbranched and a single thin ascending axon travels toward the molecular layer before bifurcating into parallel fibers. Here we show that in cerebellar granule cells, Na + channels are enriched in the axon, especially in the hillock, but almost absent from soma and dendrites. The impact of this channel distribution on neuronal electroresponsiveness was investigated by multi-compartmental modeling. Numerical simulations indicated that granule cells have a compact electrotonic structure allowing excitatory postsynaptic potentials to diffuse with little attenuation from dendrites to axon. The spike arose almost simultaneously along the whole axonal ascending branch and invaded the hillock the activation of which promoted spike back-propagation with marginal delay (&lt;200 µs) and attenuation (&lt;20 mV) into the somato-dendritic compartment. These properties allow granule cells to perform sub-millisecond coincidence detection of pre- and postsynaptic activity and to rapidly activate Purkinje cells contacted by the axonal ascending branch. Address for reprint requests and other correspondence: E. D'Angelo, Dept. of Physiological and Pharmacological Sciences, Via Forlanini 6, University of Pavia, I-27100 Pavia, Italy (E-mail dangelo{at}unipv.it )</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Axons - physiology</subject><subject>Biophysical Phenomena</subject><subject>Cerebellum - cytology</subject><subject>Electric Capacitance</subject><subject>Electric Stimulation - methods</subject><subject>Excitatory Amino Acid Agonists - pharmacology</subject><subject>In Vitro Techniques</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>N-Methylaspartate - pharmacology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Sodium Channels - physiology</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFv0zAUxi0EYmVw5Ip8ggNKsZ06ji9IpVq3SRMgMc6W47w07lw72MlY_3tcWg04cLL1-fe-5_c-hF5TMqeUsw9bP5ekrNmcEVI_QbOssYJyWT9FM0LyvSRCnKEXKW0JIYIT9hydUUlEWdNqhvTyIXjt8Gf9Hq967T24hC98miLgtU4j_jbYO8BLM9p7PdrgsfYt_qTNXfE1hkFvjqL1eAURGnBOR3wZtZ8cZMm59BI967RL8Op0nqPv64vb1VVx8-XyerW8KQxnYiygEY1kGkzbGNmxtgQtTFlJJjrJdceFMKamVAhJatNBteBGG9osuODA24qV5-jj0XeYmh20BvwYtVNDtDsd9ypoq_598bZXm3CvWMUF4Yts8PZkEMOPCdKodjaZw0QewpRUVdV5bVRksDiCJoaUInSPTShRh1DU1qvfoahDKJl_8_fP_tCnFDLw7gj0dtP_tBHU0O-TDS5s9gcvSqhiilOZyfL_5Hpy7hYexlzyWKGGtit_AZ5sqds</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Diwakar, Shyam</creator><creator>Magistretti, Jacopo</creator><creator>Goldfarb, Mitchell</creator><creator>Naldi, Giovanni</creator><creator>D'Angelo, Egidio</creator><general>Am Phys Soc</general><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>Axonal Na+ Channels Ensure Fast Spike Activation and Back-Propagation in Cerebellar Granule Cells</title><author>Diwakar, Shyam ; Magistretti, Jacopo ; Goldfarb, Mitchell ; Naldi, Giovanni ; D'Angelo, Egidio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-eb7b92aecdbc9f2d3ea7c36927f95af577cc81177908cfe645cac1b4575e5d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Axons - physiology</topic><topic>Biophysical Phenomena</topic><topic>Cerebellum - cytology</topic><topic>Electric Capacitance</topic><topic>Electric Stimulation - methods</topic><topic>Excitatory Amino Acid Agonists - pharmacology</topic><topic>In Vitro Techniques</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>N-Methylaspartate - pharmacology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Sodium Channels - physiology</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diwakar, Shyam</creatorcontrib><creatorcontrib>Magistretti, Jacopo</creatorcontrib><creatorcontrib>Goldfarb, Mitchell</creatorcontrib><creatorcontrib>Naldi, Giovanni</creatorcontrib><creatorcontrib>D'Angelo, Egidio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diwakar, Shyam</au><au>Magistretti, Jacopo</au><au>Goldfarb, Mitchell</au><au>Naldi, Giovanni</au><au>D'Angelo, Egidio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axonal Na+ Channels Ensure Fast Spike Activation and Back-Propagation in Cerebellar Granule Cells</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>101</volume><issue>2</issue><spage>519</spage><epage>532</epage><pages>519-532</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>1 Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, Italy; 2 Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Pavia Unit, Pavia, Italy; 3 Department of Mathematics, University of Milan, Milan, Italy; 4 and Department of Biological Sciences, Hunter College of City University, New York, New York Submitted 20 March 2008; accepted in final form 19 November 2008 In most neurons, Na + channels in the axon are complemented by others localized in the soma and dendrites to ensure spike back-propagation. However, cerebellar granule cells are neurons with simplified architecture in which the dendrites are short and unbranched and a single thin ascending axon travels toward the molecular layer before bifurcating into parallel fibers. Here we show that in cerebellar granule cells, Na + channels are enriched in the axon, especially in the hillock, but almost absent from soma and dendrites. The impact of this channel distribution on neuronal electroresponsiveness was investigated by multi-compartmental modeling. Numerical simulations indicated that granule cells have a compact electrotonic structure allowing excitatory postsynaptic potentials to diffuse with little attenuation from dendrites to axon. The spike arose almost simultaneously along the whole axonal ascending branch and invaded the hillock the activation of which promoted spike back-propagation with marginal delay (&lt;200 µs) and attenuation (&lt;20 mV) into the somato-dendritic compartment. These properties allow granule cells to perform sub-millisecond coincidence detection of pre- and postsynaptic activity and to rapidly activate Purkinje cells contacted by the axonal ascending branch. Address for reprint requests and other correspondence: E. D'Angelo, Dept. of Physiological and Pharmacological Sciences, Via Forlanini 6, University of Pavia, I-27100 Pavia, Italy (E-mail dangelo{at}unipv.it )</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>19073816</pmid><doi>10.1152/jn.90382.2008</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2009-02, Vol.101 (2), p.519-532
issn 0022-3077
1522-1598
language eng
recordid cdi_highwire_physiology_jn_101_2_519
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Action Potentials - physiology
Animals
Animals, Newborn
Axons - physiology
Biophysical Phenomena
Cerebellum - cytology
Electric Capacitance
Electric Stimulation - methods
Excitatory Amino Acid Agonists - pharmacology
In Vitro Techniques
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Membrane Potentials - physiology
Mice
Models, Neurological
N-Methylaspartate - pharmacology
Neurons - cytology
Neurons - physiology
Patch-Clamp Techniques
Sodium Channels - physiology
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
title Axonal Na+ Channels Ensure Fast Spike Activation and Back-Propagation in Cerebellar Granule Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axonal%20Na+%20Channels%20Ensure%20Fast%20Spike%20Activation%20and%20Back-Propagation%20in%20Cerebellar%20Granule%20Cells&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Diwakar,%20Shyam&rft.date=2009-02-01&rft.volume=101&rft.issue=2&rft.spage=519&rft.epage=532&rft.pages=519-532&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.90382.2008&rft_dat=%3Cproquest_highw%3E66890717%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66890717&rft_id=info:pmid/19073816&rfr_iscdi=true