Permissive role of prostacyclin in cerebral vasodilation to hypercapnia in newborn pigs

C. W. Leffler, R. Mirro, L. J. Pharris and M. Shibata Department of Physiology and Biophysics, University of Tennessee, Memphis 38163. Hypercapnic cerebral vasodilation in piglets is accompanied by increased cerebral prostanoid synthesis. Interventions that prevent the increased prostanoids also int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 1994-07, Vol.267 (1), p.H285-H291
Hauptverfasser: Leffler, C. W, Mirro, R, Pharris, L. J, Shibata, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:C. W. Leffler, R. Mirro, L. J. Pharris and M. Shibata Department of Physiology and Biophysics, University of Tennessee, Memphis 38163. Hypercapnic cerebral vasodilation in piglets is accompanied by increased cerebral prostanoid synthesis. Interventions that prevent the increased prostanoids also interfere with the vasodilation. However, the increased prostanoids may not produce vasodilation directly; instead, they may allow or enhance function of another mechanism. The present experiments examined the hypothesis that prostacyclin can allow, but may not directly produce, cerebral vasodilation to hypercapnia. Chloralose-anesthetized piglets were equipped with closed cranial windows for measurements of pial arteriolar diameters. Hypercapnia (arterial CO2 partial pressure approximately 70 mmHg) was administered before and after indomethacin (5 mg/kg iv) in all animals. Then artificial cerebrospinal fluid (aCSF) under the cranial window was replaced for the remainder of the experiment with aCSF containing vehicle, carbaprostacyclin (60 pM), iloprost (1 pM), prostaglandin E2 (PGE2; 1.7 and 3.3 nM), isoproterenol (10 and 100 nM), or sodium nitroprusside (1 microM), and hypercapnia was repeated. The two prostacyclin receptor agonists restored cerebral vasodilation to hypercapnia that had been blocked by indomethacin (to 92 +/- 31% and 76 +/- 11% of the before-indomethacin dilation for carbaprostacyclin and iloprost, respectively.) The highest dose of PGE2 partially restored the dilation (43 +/- 7% of the pre-indomethacin response). In contrast, neither isoproterenol nor sodium nitroprusside permitted significant dilation to hypercapnia following indomethacin treatment. These data indicate that prostacyclin can allow hypercapnic vasodilation to occur, but increasing levels do not appear to be necessary to cause the dilation directly. The short half-life of prostacyclin may explain why active prostanoid synthesis appears to be necessary for hypercapnia-induced cerebral vasodilation in newborn pigs.
ISSN:0363-6135
0002-9513
1522-1539
DOI:10.1152/ajpheart.1994.267.1.h285