Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach

This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value oper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2003-03, Vol.51 (2), p.185-209
Hauptverfasser: Davydov, Dmitry, Linetsky, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 2
container_start_page 185
container_title Operations research
container_volume 51
creator Davydov, Dmitry
Linetsky, Vadim
description This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value operator). All computational work is at the stage of finding eigenvalues and eigenfunctions of the pricing operator. The pricing is then immediate by the linearity of the pricing operator and the eigenvector property of eigensecurities. To illustrate the computational power of the method, we develop two applications:pricing vanilla, single- and double-barrier options under the constant elasticity of variance (CEV) process and interest rate knock-out options in the Cox-Ingersoll-Ross (CIR) term-structure model.
doi_str_mv 10.1287/opre.51.2.185.12782
format Article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_informs_opres_51_2_185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4132400</jstor_id><sourcerecordid>4132400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-4f45b3eff03236a07fe7c7bd9b73b3ddd7530e92bb34337a51d223eba0ab65083</originalsourceid><addsrcrecordid>eNqNkEFLwzAUx4MoOKefQA_Fg7fWJC9pOm9Dpw4GE1TwFtI22TK2tCYt6re3tbqzpwf_9_u_Bz-EzglOCM3EdVV7nXCS0IRkvItERg_QiHCaxpylcIhGGAOOIWVvx-gkhA3GeMJTPkLzJ28L61bRsm5s5UJUuei5UFvloztrTBv68CaaumhmV9qZ1hU9F80-a-X6ZTSta1-pYn2KjozaBn32O8fo9X72cvsYL5YP89vpIi4Y8CZmhvEctDEYKKQKC6NFIfJykgvIoSxLwQHrCc1zYABCcVJSCjpXWOUpxxmM0eVwt3v73urQyE3Vete9lJRMCGQZEx0EA1T4KgSvjay93Sn_JQmWvTLZK5OcSCo7ZfJHWde6GFqb0FR-X2EEKOsEjhEd1taZyu_CP29eDaW1Xa0_bAf8tXs67HH4BmsWh1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219138847</pqid></control><display><type>article</type><title>Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Davydov, Dmitry ; Linetsky, Vadim</creator><creatorcontrib>Davydov, Dmitry ; Linetsky, Vadim</creatorcontrib><description>This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value operator). All computational work is at the stage of finding eigenvalues and eigenfunctions of the pricing operator. The pricing is then immediate by the linearity of the pricing operator and the eigenvector property of eigensecurities. To illustrate the computational power of the method, we develop two applications:pricing vanilla, single- and double-barrier options under the constant elasticity of variance (CEV) process and interest rate knock-out options in the Cox-Ingersoll-Ross (CIR) term-structure model.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.51.2.185.12782</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Assets ; Boundary conditions ; Coefficients ; Diffusion ; Eigenfunctions ; Eigenvalues ; Eigenvectors ; Equation roots ; Finance, asset pricing: option pricing, CEV model, CIR model ; Finance, securities: barrier options ; Financial services ; Greens function ; Handbooks ; Hedging ; Interest rates ; Laplace transformation ; Markov analysis ; Mathematical functions ; Mathematical models ; Operations research ; Ordinary differential equations ; Partial differential equations ; Portfolio management ; Present value ; Pricing policies ; Probability, diffusion: spectral theory, barrier crossing, generalized Bessel process ; Put &amp; call options ; Scalars ; Securities ; Securities prices ; Stochastic models ; Studies ; Valuation</subject><ispartof>Operations research, 2003-03, Vol.51 (2), p.185-209</ispartof><rights>Copyright 2003 INFORMS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-4f45b3eff03236a07fe7c7bd9b73b3ddd7530e92bb34337a51d223eba0ab65083</citedby><cites>FETCH-LOGICAL-c435t-4f45b3eff03236a07fe7c7bd9b73b3ddd7530e92bb34337a51d223eba0ab65083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4132400$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.51.2.185.12782$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3690,27923,27924,58016,58249,62615</link.rule.ids></links><search><creatorcontrib>Davydov, Dmitry</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><title>Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach</title><title>Operations research</title><description>This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value operator). All computational work is at the stage of finding eigenvalues and eigenfunctions of the pricing operator. The pricing is then immediate by the linearity of the pricing operator and the eigenvector property of eigensecurities. To illustrate the computational power of the method, we develop two applications:pricing vanilla, single- and double-barrier options under the constant elasticity of variance (CEV) process and interest rate knock-out options in the Cox-Ingersoll-Ross (CIR) term-structure model.</description><subject>Assets</subject><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Diffusion</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Equation roots</subject><subject>Finance, asset pricing: option pricing, CEV model, CIR model</subject><subject>Finance, securities: barrier options</subject><subject>Financial services</subject><subject>Greens function</subject><subject>Handbooks</subject><subject>Hedging</subject><subject>Interest rates</subject><subject>Laplace transformation</subject><subject>Markov analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Portfolio management</subject><subject>Present value</subject><subject>Pricing policies</subject><subject>Probability, diffusion: spectral theory, barrier crossing, generalized Bessel process</subject><subject>Put &amp; call options</subject><subject>Scalars</subject><subject>Securities</subject><subject>Securities prices</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Valuation</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkEFLwzAUx4MoOKefQA_Fg7fWJC9pOm9Dpw4GE1TwFtI22TK2tCYt6re3tbqzpwf_9_u_Bz-EzglOCM3EdVV7nXCS0IRkvItERg_QiHCaxpylcIhGGAOOIWVvx-gkhA3GeMJTPkLzJ28L61bRsm5s5UJUuei5UFvloztrTBv68CaaumhmV9qZ1hU9F80-a-X6ZTSta1-pYn2KjozaBn32O8fo9X72cvsYL5YP89vpIi4Y8CZmhvEctDEYKKQKC6NFIfJykgvIoSxLwQHrCc1zYABCcVJSCjpXWOUpxxmM0eVwt3v73urQyE3Vete9lJRMCGQZEx0EA1T4KgSvjay93Sn_JQmWvTLZK5OcSCo7ZfJHWde6GFqb0FR-X2EEKOsEjhEd1taZyu_CP29eDaW1Xa0_bAf8tXs67HH4BmsWh1M</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Davydov, Dmitry</creator><creator>Linetsky, Vadim</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030301</creationdate><title>Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach</title><author>Davydov, Dmitry ; Linetsky, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-4f45b3eff03236a07fe7c7bd9b73b3ddd7530e92bb34337a51d223eba0ab65083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Assets</topic><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Diffusion</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Equation roots</topic><topic>Finance, asset pricing: option pricing, CEV model, CIR model</topic><topic>Finance, securities: barrier options</topic><topic>Financial services</topic><topic>Greens function</topic><topic>Handbooks</topic><topic>Hedging</topic><topic>Interest rates</topic><topic>Laplace transformation</topic><topic>Markov analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Portfolio management</topic><topic>Present value</topic><topic>Pricing policies</topic><topic>Probability, diffusion: spectral theory, barrier crossing, generalized Bessel process</topic><topic>Put &amp; call options</topic><topic>Scalars</topic><topic>Securities</topic><topic>Securities prices</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Valuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davydov, Dmitry</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davydov, Dmitry</au><au>Linetsky, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach</atitle><jtitle>Operations research</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>51</volume><issue>2</issue><spage>185</spage><epage>209</epage><pages>185-209</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value operator). All computational work is at the stage of finding eigenvalues and eigenfunctions of the pricing operator. The pricing is then immediate by the linearity of the pricing operator and the eigenvector property of eigensecurities. To illustrate the computational power of the method, we develop two applications:pricing vanilla, single- and double-barrier options under the constant elasticity of variance (CEV) process and interest rate knock-out options in the Cox-Ingersoll-Ross (CIR) term-structure model.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.51.2.185.12782</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 2003-03, Vol.51 (2), p.185-209
issn 0030-364X
1526-5463
language eng
recordid cdi_highwire_informs_opres_51_2_185
source INFORMS PubsOnLine; Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Assets
Boundary conditions
Coefficients
Diffusion
Eigenfunctions
Eigenvalues
Eigenvectors
Equation roots
Finance, asset pricing: option pricing, CEV model, CIR model
Finance, securities: barrier options
Financial services
Greens function
Handbooks
Hedging
Interest rates
Laplace transformation
Markov analysis
Mathematical functions
Mathematical models
Operations research
Ordinary differential equations
Partial differential equations
Portfolio management
Present value
Pricing policies
Probability, diffusion: spectral theory, barrier crossing, generalized Bessel process
Put & call options
Scalars
Securities
Securities prices
Stochastic models
Studies
Valuation
title Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pricing%20Options%20on%20Scalar%20Diffusions:%20An%20Eigenfunction%20Expansion%20Approach&rft.jtitle=Operations%20research&rft.au=Davydov,%20Dmitry&rft.date=2003-03-01&rft.volume=51&rft.issue=2&rft.spage=185&rft.epage=209&rft.pages=185-209&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.51.2.185.12782&rft_dat=%3Cjstor_highw%3E4132400%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219138847&rft_id=info:pmid/&rft_jstor_id=4132400&rfr_iscdi=true