Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach
This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value oper...
Gespeichert in:
Veröffentlicht in: | Operations research 2003-03, Vol.51 (2), p.185-209 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | Operations research |
container_volume | 51 |
creator | Davydov, Dmitry Linetsky, Vadim |
description | This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value operator). All computational work is at the stage of finding eigenvalues and eigenfunctions of the pricing operator. The pricing is then immediate by the linearity of the pricing operator and the eigenvector property of eigensecurities. To illustrate the computational power of the method, we develop two applications:pricing vanilla, single- and double-barrier options under the constant elasticity of variance (CEV) process and interest rate knock-out options in the Cox-Ingersoll-Ross (CIR) term-structure model. |
doi_str_mv | 10.1287/opre.51.2.185.12782 |
format | Article |
fullrecord | <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_informs_opres_51_2_185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4132400</jstor_id><sourcerecordid>4132400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-4f45b3eff03236a07fe7c7bd9b73b3ddd7530e92bb34337a51d223eba0ab65083</originalsourceid><addsrcrecordid>eNqNkEFLwzAUx4MoOKefQA_Fg7fWJC9pOm9Dpw4GE1TwFtI22TK2tCYt6re3tbqzpwf_9_u_Bz-EzglOCM3EdVV7nXCS0IRkvItERg_QiHCaxpylcIhGGAOOIWVvx-gkhA3GeMJTPkLzJ28L61bRsm5s5UJUuei5UFvloztrTBv68CaaumhmV9qZ1hU9F80-a-X6ZTSta1-pYn2KjozaBn32O8fo9X72cvsYL5YP89vpIi4Y8CZmhvEctDEYKKQKC6NFIfJykgvIoSxLwQHrCc1zYABCcVJSCjpXWOUpxxmM0eVwt3v73urQyE3Vete9lJRMCGQZEx0EA1T4KgSvjay93Sn_JQmWvTLZK5OcSCo7ZfJHWde6GFqb0FR-X2EEKOsEjhEd1taZyu_CP29eDaW1Xa0_bAf8tXs67HH4BmsWh1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219138847</pqid></control><display><type>article</type><title>Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Davydov, Dmitry ; Linetsky, Vadim</creator><creatorcontrib>Davydov, Dmitry ; Linetsky, Vadim</creatorcontrib><description>This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value operator). All computational work is at the stage of finding eigenvalues and eigenfunctions of the pricing operator. The pricing is then immediate by the linearity of the pricing operator and the eigenvector property of eigensecurities. To illustrate the computational power of the method, we develop two applications:pricing vanilla, single- and double-barrier options under the constant elasticity of variance (CEV) process and interest rate knock-out options in the Cox-Ingersoll-Ross (CIR) term-structure model.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.51.2.185.12782</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Assets ; Boundary conditions ; Coefficients ; Diffusion ; Eigenfunctions ; Eigenvalues ; Eigenvectors ; Equation roots ; Finance, asset pricing: option pricing, CEV model, CIR model ; Finance, securities: barrier options ; Financial services ; Greens function ; Handbooks ; Hedging ; Interest rates ; Laplace transformation ; Markov analysis ; Mathematical functions ; Mathematical models ; Operations research ; Ordinary differential equations ; Partial differential equations ; Portfolio management ; Present value ; Pricing policies ; Probability, diffusion: spectral theory, barrier crossing, generalized Bessel process ; Put & call options ; Scalars ; Securities ; Securities prices ; Stochastic models ; Studies ; Valuation</subject><ispartof>Operations research, 2003-03, Vol.51 (2), p.185-209</ispartof><rights>Copyright 2003 INFORMS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-4f45b3eff03236a07fe7c7bd9b73b3ddd7530e92bb34337a51d223eba0ab65083</citedby><cites>FETCH-LOGICAL-c435t-4f45b3eff03236a07fe7c7bd9b73b3ddd7530e92bb34337a51d223eba0ab65083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4132400$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.51.2.185.12782$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3690,27923,27924,58016,58249,62615</link.rule.ids></links><search><creatorcontrib>Davydov, Dmitry</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><title>Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach</title><title>Operations research</title><description>This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value operator). All computational work is at the stage of finding eigenvalues and eigenfunctions of the pricing operator. The pricing is then immediate by the linearity of the pricing operator and the eigenvector property of eigensecurities. To illustrate the computational power of the method, we develop two applications:pricing vanilla, single- and double-barrier options under the constant elasticity of variance (CEV) process and interest rate knock-out options in the Cox-Ingersoll-Ross (CIR) term-structure model.</description><subject>Assets</subject><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Diffusion</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Equation roots</subject><subject>Finance, asset pricing: option pricing, CEV model, CIR model</subject><subject>Finance, securities: barrier options</subject><subject>Financial services</subject><subject>Greens function</subject><subject>Handbooks</subject><subject>Hedging</subject><subject>Interest rates</subject><subject>Laplace transformation</subject><subject>Markov analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Portfolio management</subject><subject>Present value</subject><subject>Pricing policies</subject><subject>Probability, diffusion: spectral theory, barrier crossing, generalized Bessel process</subject><subject>Put & call options</subject><subject>Scalars</subject><subject>Securities</subject><subject>Securities prices</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Valuation</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkEFLwzAUx4MoOKefQA_Fg7fWJC9pOm9Dpw4GE1TwFtI22TK2tCYt6re3tbqzpwf_9_u_Bz-EzglOCM3EdVV7nXCS0IRkvItERg_QiHCaxpylcIhGGAOOIWVvx-gkhA3GeMJTPkLzJ28L61bRsm5s5UJUuei5UFvloztrTBv68CaaumhmV9qZ1hU9F80-a-X6ZTSta1-pYn2KjozaBn32O8fo9X72cvsYL5YP89vpIi4Y8CZmhvEctDEYKKQKC6NFIfJykgvIoSxLwQHrCc1zYABCcVJSCjpXWOUpxxmM0eVwt3v73urQyE3Vete9lJRMCGQZEx0EA1T4KgSvjay93Sn_JQmWvTLZK5OcSCo7ZfJHWde6GFqb0FR-X2EEKOsEjhEd1taZyu_CP29eDaW1Xa0_bAf8tXs67HH4BmsWh1M</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Davydov, Dmitry</creator><creator>Linetsky, Vadim</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030301</creationdate><title>Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach</title><author>Davydov, Dmitry ; Linetsky, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-4f45b3eff03236a07fe7c7bd9b73b3ddd7530e92bb34337a51d223eba0ab65083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Assets</topic><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Diffusion</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Equation roots</topic><topic>Finance, asset pricing: option pricing, CEV model, CIR model</topic><topic>Finance, securities: barrier options</topic><topic>Financial services</topic><topic>Greens function</topic><topic>Handbooks</topic><topic>Hedging</topic><topic>Interest rates</topic><topic>Laplace transformation</topic><topic>Markov analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Portfolio management</topic><topic>Present value</topic><topic>Pricing policies</topic><topic>Probability, diffusion: spectral theory, barrier crossing, generalized Bessel process</topic><topic>Put & call options</topic><topic>Scalars</topic><topic>Securities</topic><topic>Securities prices</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Valuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davydov, Dmitry</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davydov, Dmitry</au><au>Linetsky, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach</atitle><jtitle>Operations research</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>51</volume><issue>2</issue><spage>185</spage><epage>209</epage><pages>185-209</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>This paper develops an eigenfunction expansion approach to pricing options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities . Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value operator). All computational work is at the stage of finding eigenvalues and eigenfunctions of the pricing operator. The pricing is then immediate by the linearity of the pricing operator and the eigenvector property of eigensecurities. To illustrate the computational power of the method, we develop two applications:pricing vanilla, single- and double-barrier options under the constant elasticity of variance (CEV) process and interest rate knock-out options in the Cox-Ingersoll-Ross (CIR) term-structure model.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.51.2.185.12782</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 2003-03, Vol.51 (2), p.185-209 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_highwire_informs_opres_51_2_185 |
source | INFORMS PubsOnLine; Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | Assets Boundary conditions Coefficients Diffusion Eigenfunctions Eigenvalues Eigenvectors Equation roots Finance, asset pricing: option pricing, CEV model, CIR model Finance, securities: barrier options Financial services Greens function Handbooks Hedging Interest rates Laplace transformation Markov analysis Mathematical functions Mathematical models Operations research Ordinary differential equations Partial differential equations Portfolio management Present value Pricing policies Probability, diffusion: spectral theory, barrier crossing, generalized Bessel process Put & call options Scalars Securities Securities prices Stochastic models Studies Valuation |
title | Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pricing%20Options%20on%20Scalar%20Diffusions:%20An%20Eigenfunction%20Expansion%20Approach&rft.jtitle=Operations%20research&rft.au=Davydov,%20Dmitry&rft.date=2003-03-01&rft.volume=51&rft.issue=2&rft.spage=185&rft.epage=209&rft.pages=185-209&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.51.2.185.12782&rft_dat=%3Cjstor_highw%3E4132400%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219138847&rft_id=info:pmid/&rft_jstor_id=4132400&rfr_iscdi=true |