Variance of the Sample Mean: Properties and Graphs of Quadratic-Form Estimators

Many commonly used estimators of the variance of the sample mean from a covariance-stationary process can be written as quadratic forms. We study the class of quadratic-form estimators algebraically and graphically, including five specific types of estimators, some from the literature and some that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 1993-05, Vol.41 (3), p.501-517
Hauptverfasser: Song, Wheyming Tina, Schmeiser, Bruce W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue 3
container_start_page 501
container_title Operations research
container_volume 41
creator Song, Wheyming Tina
Schmeiser, Bruce W
description Many commonly used estimators of the variance of the sample mean from a covariance-stationary process can be written as quadratic forms. We study the class of quadratic-form estimators algebraically and graphically, including five specific types of estimators, some from the literature and some that are new. Finite and asymptotic bias, variance, and covariance are derived and examined, with emphasis on developing intuition and insight by interpreting these properties graphically. The graphs depict the nonoptimal statistical behavior of some of the simulation literature estimators such as nonoverlapping batch means, as well as the better behavior of estimators obtained by overlapping batches.
doi_str_mv 10.1287/opre.41.3.501
format Article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_informs_opres_41_3_501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>171852</jstor_id><sourcerecordid>171852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-8850284413c2f56aee8b960af05194535192ce04641dc28404a3ebb7580ff0193</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4MoOKdHT16Ciidb893Wm4xtCpMpfuAtZF1iM7a2Jh3if29KpzuJl-Twe97fy_sAcIxRjEmaXFW10zHDMY05wjughzkREWeC7oIeQhRFVLC3fXDg_QIhlHHBe2D6qpxVZa5hZWBTaPikVvVSw3utymv44Kpau8ZqD1U5h2On6sK35ONazZ1qbB6NKreCQ9_YlWoq5w_BnlFLr482fx-8jIbPg9toMh3fDW4mUU5F0kRpyhFJGcM0J4YLpXU6ywRSBnGcMU7DS3KNmGB4ngcQMUX1bJbwFBmDcEb74LTrrV31sda-kYtq7cqwUhKcYSw4ZQE6-wvCNAgRKSckUFFH5a7y3mkjaxeucV8SI9mKla1YybCkMogN_PmmVflcLY0L-qz_HWJEtN0BO-mwhQ9itp0JDltDetmltjTBoP9350WHF_a9-LQh-plrOb8FvwEYUptP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219116534</pqid></control><display><type>article</type><title>Variance of the Sample Mean: Properties and Graphs of Quadratic-Form Estimators</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>Periodicals Index Online</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Song, Wheyming Tina ; Schmeiser, Bruce W</creator><creatorcontrib>Song, Wheyming Tina ; Schmeiser, Bruce W</creatorcontrib><description>Many commonly used estimators of the variance of the sample mean from a covariance-stationary process can be written as quadratic forms. We study the class of quadratic-form estimators algebraically and graphically, including five specific types of estimators, some from the literature and some that are new. Finite and asymptotic bias, variance, and covariance are derived and examined, with emphasis on developing intuition and insight by interpreting these properties graphically. The graphs depict the nonoptimal statistical behavior of some of the simulation literature estimators such as nonoverlapping batch means, as well as the better behavior of estimators obtained by overlapping batches.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.41.3.501</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Algebra ; Autocorrelation ; Coefficients ; Estimating techniques ; Estimation bias ; Estimators ; Estimators for the mean ; Exact sciences and technology ; Graphs ; Inference from stochastic processes; time series analysis ; Mathematics ; Operations research ; Probability and statistics ; Sample mean ; Sample size ; Sciences and techniques of general use ; Simulation ; simulation: statistical analysis ; Statistical methods ; Statistical variance ; Statistics ; statistics: estimation ; Stochastic models ; Time series ; Variance analysis</subject><ispartof>Operations research, 1993-05, Vol.41 (3), p.501-517</ispartof><rights>Copyright 1993 The Operations Research Society of America</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences May/Jun 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-8850284413c2f56aee8b960af05194535192ce04641dc28404a3ebb7580ff0193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/171852$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.41.3.501$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>315,782,786,805,3696,27878,27933,27934,58026,58259,62625</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4263030$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Wheyming Tina</creatorcontrib><creatorcontrib>Schmeiser, Bruce W</creatorcontrib><title>Variance of the Sample Mean: Properties and Graphs of Quadratic-Form Estimators</title><title>Operations research</title><description>Many commonly used estimators of the variance of the sample mean from a covariance-stationary process can be written as quadratic forms. We study the class of quadratic-form estimators algebraically and graphically, including five specific types of estimators, some from the literature and some that are new. Finite and asymptotic bias, variance, and covariance are derived and examined, with emphasis on developing intuition and insight by interpreting these properties graphically. The graphs depict the nonoptimal statistical behavior of some of the simulation literature estimators such as nonoverlapping batch means, as well as the better behavior of estimators obtained by overlapping batches.</description><subject>Algebra</subject><subject>Autocorrelation</subject><subject>Coefficients</subject><subject>Estimating techniques</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematics</subject><subject>Operations research</subject><subject>Probability and statistics</subject><subject>Sample mean</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>simulation: statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>statistics: estimation</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>Variance analysis</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkM1LwzAYh4MoOKdHT16Ciidb893Wm4xtCpMpfuAtZF1iM7a2Jh3if29KpzuJl-Twe97fy_sAcIxRjEmaXFW10zHDMY05wjughzkREWeC7oIeQhRFVLC3fXDg_QIhlHHBe2D6qpxVZa5hZWBTaPikVvVSw3utymv44Kpau8ZqD1U5h2On6sK35ONazZ1qbB6NKreCQ9_YlWoq5w_BnlFLr482fx-8jIbPg9toMh3fDW4mUU5F0kRpyhFJGcM0J4YLpXU6ywRSBnGcMU7DS3KNmGB4ngcQMUX1bJbwFBmDcEb74LTrrV31sda-kYtq7cqwUhKcYSw4ZQE6-wvCNAgRKSckUFFH5a7y3mkjaxeucV8SI9mKla1YybCkMogN_PmmVflcLY0L-qz_HWJEtN0BO-mwhQ9itp0JDltDetmltjTBoP9350WHF_a9-LQh-plrOb8FvwEYUptP</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Song, Wheyming Tina</creator><creator>Schmeiser, Bruce W</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19930501</creationdate><title>Variance of the Sample Mean: Properties and Graphs of Quadratic-Form Estimators</title><author>Song, Wheyming Tina ; Schmeiser, Bruce W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-8850284413c2f56aee8b960af05194535192ce04641dc28404a3ebb7580ff0193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algebra</topic><topic>Autocorrelation</topic><topic>Coefficients</topic><topic>Estimating techniques</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematics</topic><topic>Operations research</topic><topic>Probability and statistics</topic><topic>Sample mean</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>simulation: statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>statistics: estimation</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Wheyming Tina</creatorcontrib><creatorcontrib>Schmeiser, Bruce W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Wheyming Tina</au><au>Schmeiser, Bruce W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variance of the Sample Mean: Properties and Graphs of Quadratic-Form Estimators</atitle><jtitle>Operations research</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>41</volume><issue>3</issue><spage>501</spage><epage>517</epage><pages>501-517</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>Many commonly used estimators of the variance of the sample mean from a covariance-stationary process can be written as quadratic forms. We study the class of quadratic-form estimators algebraically and graphically, including five specific types of estimators, some from the literature and some that are new. Finite and asymptotic bias, variance, and covariance are derived and examined, with emphasis on developing intuition and insight by interpreting these properties graphically. The graphs depict the nonoptimal statistical behavior of some of the simulation literature estimators such as nonoverlapping batch means, as well as the better behavior of estimators obtained by overlapping batches.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/opre.41.3.501</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 1993-05, Vol.41 (3), p.501-517
issn 0030-364X
1526-5463
language eng
recordid cdi_highwire_informs_opres_41_3_501
source INFORMS PubsOnLine; Business Source Complete; Periodicals Index Online; JSTOR Archive Collection A-Z Listing
subjects Algebra
Autocorrelation
Coefficients
Estimating techniques
Estimation bias
Estimators
Estimators for the mean
Exact sciences and technology
Graphs
Inference from stochastic processes
time series analysis
Mathematics
Operations research
Probability and statistics
Sample mean
Sample size
Sciences and techniques of general use
Simulation
simulation: statistical analysis
Statistical methods
Statistical variance
Statistics
statistics: estimation
Stochastic models
Time series
Variance analysis
title Variance of the Sample Mean: Properties and Graphs of Quadratic-Form Estimators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variance%20of%20the%20Sample%20Mean:%20Properties%20and%20Graphs%20of%20Quadratic-Form%20Estimators&rft.jtitle=Operations%20research&rft.au=Song,%20Wheyming%20Tina&rft.date=1993-05-01&rft.volume=41&rft.issue=3&rft.spage=501&rft.epage=517&rft.pages=501-517&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.41.3.501&rft_dat=%3Cjstor_highw%3E171852%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219116534&rft_id=info:pmid/&rft_jstor_id=171852&rfr_iscdi=true