Formulating Two-Stage Stochastic Programs for Interior Point Methods

This paper describes an approach for modeling two-stage stochastic programs that yields a form suitable for interior point algorithms. A staircase constraint structure is created by replacing first stage variables with sparse "split variables" in conjunction with side-constraints. Dense co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 1991-09, Vol.39 (5), p.757-770
Hauptverfasser: Lustig, Irvin J, Mulvey, John M, Carpenter, Tamra J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 770
container_issue 5
container_start_page 757
container_title Operations research
container_volume 39
creator Lustig, Irvin J
Mulvey, John M
Carpenter, Tamra J
description This paper describes an approach for modeling two-stage stochastic programs that yields a form suitable for interior point algorithms. A staircase constraint structure is created by replacing first stage variables with sparse "split variables" in conjunction with side-constraints. Dense columns are thereby eliminated. The resulting model is larger than traditional stochastic programs, but computational savings are substantial—over a tenfold improvement for the problems tested. A series of experiments with stochastic networks drawn from financial planning demonstrates the attained efficiencies. Comparisons with MINOS and the dual block angular stochastic programming model are provided as benchmarks. The split variable approach is applicable to general two-stage stochastic programs and other dual block angular models.
doi_str_mv 10.1287/opre.39.5.757
format Article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_informs_opres_39_5_757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>171205</jstor_id><sourcerecordid>171205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2546-a953148690ecf506dc7ffd5e4d00b886c55ffc6e6fbb95e4fce1fdfbc7bf26c73</originalsourceid><addsrcrecordid>eNqFkE1PAjEURRujiYguXbmZqHHlYD9oyywNipJoJAETd02n00IJTLEtIf57SwZlZVy16T3vvuYAcI5gB-Eev3Mrrzuk6NAOp_wAtBDFLKddRg5BC0ICc8K6H8fgJIQ5hLCgjLbAw8D55Xoho62n2WTj8nGUU52No1MzGaJV2ci7qZfLkBnns2EdtbfpMnK2jtmrjjNXhVNwZOQi6LPd2Qbvg8dJ_zl_eXsa9u9fcoXTN3JZUIK6PVZArQyFrFLcmIrqbgVh2esxRakximlmyrJIz0ZpZCpTKl4azBQnbXDZ9K68-1zrEMXcrX2dVgqMCsRRwViCrv6CEEkWOOMIJSpvKOVdCF4bsfJ2Kf2XQFBsbYqtTUEKQUWymfjrXasMSi6Ml7Wy4XeIYk4oxgm7aLB5iM7vOznCkKb0tkltnWQuw787bxp8ZqezjU3Rz9yWC3vwGwSvmvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219171966</pqid></control><display><type>article</type><title>Formulating Two-Stage Stochastic Programs for Interior Point Methods</title><source>INFORMS PubsOnLine</source><source>Periodicals Index Online</source><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><creator>Lustig, Irvin J ; Mulvey, John M ; Carpenter, Tamra J</creator><creatorcontrib>Lustig, Irvin J ; Mulvey, John M ; Carpenter, Tamra J</creatorcontrib><description>This paper describes an approach for modeling two-stage stochastic programs that yields a form suitable for interior point algorithms. A staircase constraint structure is created by replacing first stage variables with sparse "split variables" in conjunction with side-constraints. Dense columns are thereby eliminated. The resulting model is larger than traditional stochastic programs, but computational savings are substantial—over a tenfold improvement for the problems tested. A series of experiments with stochastic networks drawn from financial planning demonstrates the attained efficiencies. Comparisons with MINOS and the dual block angular stochastic programming model are provided as benchmarks. The split variable approach is applicable to general two-stage stochastic programs and other dual block angular models.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.39.5.757</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Aggregation ; Algorithms ; Applied sciences ; Comparative studies ; Determinism ; Equations ; Exact sciences and technology ; Interior points ; Linear programming ; linear: techniques for stochastic linear programs ; Mathematical models ; Mathematical programming ; Objective functions ; Operational research and scientific management ; Operational research. Management science ; Operations research ; programming ; Staircases ; Statistical analysis ; Stochastic models ; stochastic: solution by interior point methods ; Theory</subject><ispartof>Operations research, 1991-09, Vol.39 (5), p.757-770</ispartof><rights>Copyright 1991 The Operations Research Society of America</rights><rights>1992 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Sep/Oct 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2546-a953148690ecf506dc7ffd5e4d00b886c55ffc6e6fbb95e4fce1fdfbc7bf26c73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/171205$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.39.5.757$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,778,782,801,3681,27856,27911,27912,58004,58237,62601</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5273522$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lustig, Irvin J</creatorcontrib><creatorcontrib>Mulvey, John M</creatorcontrib><creatorcontrib>Carpenter, Tamra J</creatorcontrib><title>Formulating Two-Stage Stochastic Programs for Interior Point Methods</title><title>Operations research</title><description>This paper describes an approach for modeling two-stage stochastic programs that yields a form suitable for interior point algorithms. A staircase constraint structure is created by replacing first stage variables with sparse "split variables" in conjunction with side-constraints. Dense columns are thereby eliminated. The resulting model is larger than traditional stochastic programs, but computational savings are substantial—over a tenfold improvement for the problems tested. A series of experiments with stochastic networks drawn from financial planning demonstrates the attained efficiencies. Comparisons with MINOS and the dual block angular stochastic programming model are provided as benchmarks. The split variable approach is applicable to general two-stage stochastic programs and other dual block angular models.</description><subject>Aggregation</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Comparative studies</subject><subject>Determinism</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Interior points</subject><subject>Linear programming</subject><subject>linear: techniques for stochastic linear programs</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Objective functions</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>programming</subject><subject>Staircases</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><subject>stochastic: solution by interior point methods</subject><subject>Theory</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1PAjEURRujiYguXbmZqHHlYD9oyywNipJoJAETd02n00IJTLEtIf57SwZlZVy16T3vvuYAcI5gB-Eev3Mrrzuk6NAOp_wAtBDFLKddRg5BC0ICc8K6H8fgJIQ5hLCgjLbAw8D55Xoho62n2WTj8nGUU52No1MzGaJV2ci7qZfLkBnns2EdtbfpMnK2jtmrjjNXhVNwZOQi6LPd2Qbvg8dJ_zl_eXsa9u9fcoXTN3JZUIK6PVZArQyFrFLcmIrqbgVh2esxRakximlmyrJIz0ZpZCpTKl4azBQnbXDZ9K68-1zrEMXcrX2dVgqMCsRRwViCrv6CEEkWOOMIJSpvKOVdCF4bsfJ2Kf2XQFBsbYqtTUEKQUWymfjrXasMSi6Ml7Wy4XeIYk4oxgm7aLB5iM7vOznCkKb0tkltnWQuw787bxp8ZqezjU3Rz9yWC3vwGwSvmvk</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>Lustig, Irvin J</creator><creator>Mulvey, John M</creator><creator>Carpenter, Tamra J</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19910901</creationdate><title>Formulating Two-Stage Stochastic Programs for Interior Point Methods</title><author>Lustig, Irvin J ; Mulvey, John M ; Carpenter, Tamra J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2546-a953148690ecf506dc7ffd5e4d00b886c55ffc6e6fbb95e4fce1fdfbc7bf26c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Aggregation</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Comparative studies</topic><topic>Determinism</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Interior points</topic><topic>Linear programming</topic><topic>linear: techniques for stochastic linear programs</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Objective functions</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>programming</topic><topic>Staircases</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><topic>stochastic: solution by interior point methods</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lustig, Irvin J</creatorcontrib><creatorcontrib>Mulvey, John M</creatorcontrib><creatorcontrib>Carpenter, Tamra J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lustig, Irvin J</au><au>Mulvey, John M</au><au>Carpenter, Tamra J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulating Two-Stage Stochastic Programs for Interior Point Methods</atitle><jtitle>Operations research</jtitle><date>1991-09-01</date><risdate>1991</risdate><volume>39</volume><issue>5</issue><spage>757</spage><epage>770</epage><pages>757-770</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>This paper describes an approach for modeling two-stage stochastic programs that yields a form suitable for interior point algorithms. A staircase constraint structure is created by replacing first stage variables with sparse "split variables" in conjunction with side-constraints. Dense columns are thereby eliminated. The resulting model is larger than traditional stochastic programs, but computational savings are substantial—over a tenfold improvement for the problems tested. A series of experiments with stochastic networks drawn from financial planning demonstrates the attained efficiencies. Comparisons with MINOS and the dual block angular stochastic programming model are provided as benchmarks. The split variable approach is applicable to general two-stage stochastic programs and other dual block angular models.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/opre.39.5.757</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 1991-09, Vol.39 (5), p.757-770
issn 0030-364X
1526-5463
language eng
recordid cdi_highwire_informs_opres_39_5_757
source INFORMS PubsOnLine; Periodicals Index Online; EBSCOhost Business Source Complete; Jstor Complete Legacy
subjects Aggregation
Algorithms
Applied sciences
Comparative studies
Determinism
Equations
Exact sciences and technology
Interior points
Linear programming
linear: techniques for stochastic linear programs
Mathematical models
Mathematical programming
Objective functions
Operational research and scientific management
Operational research. Management science
Operations research
programming
Staircases
Statistical analysis
Stochastic models
stochastic: solution by interior point methods
Theory
title Formulating Two-Stage Stochastic Programs for Interior Point Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulating%20Two-Stage%20Stochastic%20Programs%20for%20Interior%20Point%20Methods&rft.jtitle=Operations%20research&rft.au=Lustig,%20Irvin%20J&rft.date=1991-09-01&rft.volume=39&rft.issue=5&rft.spage=757&rft.epage=770&rft.pages=757-770&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.39.5.757&rft_dat=%3Cjstor_highw%3E171205%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219171966&rft_id=info:pmid/&rft_jstor_id=171205&rfr_iscdi=true