Deterministic Minimal Time Vessel Routing
We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the...
Gespeichert in:
Veröffentlicht in: | Operations research 1990-05, Vol.38 (3), p.426-438 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 438 |
---|---|
container_issue | 3 |
container_start_page | 426 |
container_title | Operations research |
container_volume | 38 |
creator | Papadakis, Nikiforos A Perakis, Anastassios N |
description | We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the velocity of the traveling vessel within each subregion depends only on the direction of motion. Variational calculus is used to derive the geometry of piecewise linear extremals. For the time dependent problem, the speed of the vessel within each subregion is assumed to be a known function of time and the direction of motion. Optimal control theory is used to reveal the nature of piecewise continuous optimal policies. |
doi_str_mv | 10.1287/opre.38.3.426 |
format | Article |
fullrecord | <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_informs_opres_38_3_426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>171356</jstor_id><sourcerecordid>171356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-be0c9815e89d95c742ceef54d848723ce09e0dacb8e457264d490568d09e360d3</originalsourceid><addsrcrecordid>eNqFkMtLw0AQxhdRsFaPnrwERUEwcd-Po9QnVASp4m1JN5t2S5rU3RTxv3dDKj2Jpxnm-803zAfAMYIZwlJcNytvMyIzklHMd8AAMcxTRjnZBQMICUwJpx_74CCEBYRQMc4G4PLWttYvXe1C60zyHJtlXiUTt7TJuw3BVslrs25dPTsEe2VeBXu0qUPwdn83GT2m45eHp9HNODVU0DadWmiURMxKVShmBMXG2pLRQlIpMDEWKguL3EylpUxgTguqIOOyiHPCYUGG4LT3Xfnmc21DqxfN2tfxpMZIIYEgpxE6-wtCJL4qhBIyUmlPGd-E4G2pVz6-5781grqLTHeRaSI10TGyyJ9vXPNg8qr0eW1c2C4pgSiWOHInPbcIbeO3ukCEdS5XverqsvHL8O_Rix6fu9n8y0Xpd6_jwhb8AS-jj4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219171064</pqid></control><display><type>article</type><title>Deterministic Minimal Time Vessel Routing</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>Periodicals Index Online</source><creator>Papadakis, Nikiforos A ; Perakis, Anastassios N</creator><creatorcontrib>Papadakis, Nikiforos A ; Perakis, Anastassios N</creatorcontrib><description>We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the velocity of the traveling vessel within each subregion depends only on the direction of motion. Variational calculus is used to derive the geometry of piecewise linear extremals. For the time dependent problem, the speed of the vessel within each subregion is assumed to be a known function of time and the direction of motion. Optimal control theory is used to reveal the nature of piecewise continuous optimal policies.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.38.3.426</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Adjoints ; Applied sciences ; Boundary conditions ; Constraints ; dynamic programming: optimal control ; Equations of state ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Lagrange multiplier ; Line segments ; Mathematical models ; Minimum ; Movement ; Necessary conditions ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimal ; Optimal control ; Routing ; Sailing ; Ships ; Theory ; Time ; Time dependence ; Trajectories ; transportation: route selection ; water transportation</subject><ispartof>Operations research, 1990-05, Vol.38 (3), p.426-438</ispartof><rights>Copyright 1990 The Operations Research Society of America</rights><rights>1991 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences May/Jun 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-be0c9815e89d95c742ceef54d848723ce09e0dacb8e457264d490568d09e360d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/171356$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.38.3.426$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27848,27903,27904,57995,58228,62592</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19714282$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Papadakis, Nikiforos A</creatorcontrib><creatorcontrib>Perakis, Anastassios N</creatorcontrib><title>Deterministic Minimal Time Vessel Routing</title><title>Operations research</title><description>We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the velocity of the traveling vessel within each subregion depends only on the direction of motion. Variational calculus is used to derive the geometry of piecewise linear extremals. For the time dependent problem, the speed of the vessel within each subregion is assumed to be a known function of time and the direction of motion. Optimal control theory is used to reveal the nature of piecewise continuous optimal policies.</description><subject>Adjoints</subject><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Constraints</subject><subject>dynamic programming: optimal control</subject><subject>Equations of state</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Lagrange multiplier</subject><subject>Line segments</subject><subject>Mathematical models</subject><subject>Minimum</subject><subject>Movement</subject><subject>Necessary conditions</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimal</subject><subject>Optimal control</subject><subject>Routing</subject><subject>Sailing</subject><subject>Ships</subject><subject>Theory</subject><subject>Time</subject><subject>Time dependence</subject><subject>Trajectories</subject><subject>transportation: route selection</subject><subject>water transportation</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkMtLw0AQxhdRsFaPnrwERUEwcd-Po9QnVASp4m1JN5t2S5rU3RTxv3dDKj2Jpxnm-803zAfAMYIZwlJcNytvMyIzklHMd8AAMcxTRjnZBQMICUwJpx_74CCEBYRQMc4G4PLWttYvXe1C60zyHJtlXiUTt7TJuw3BVslrs25dPTsEe2VeBXu0qUPwdn83GT2m45eHp9HNODVU0DadWmiURMxKVShmBMXG2pLRQlIpMDEWKguL3EylpUxgTguqIOOyiHPCYUGG4LT3Xfnmc21DqxfN2tfxpMZIIYEgpxE6-wtCJL4qhBIyUmlPGd-E4G2pVz6-5781grqLTHeRaSI10TGyyJ9vXPNg8qr0eW1c2C4pgSiWOHInPbcIbeO3ukCEdS5XverqsvHL8O_Rix6fu9n8y0Xpd6_jwhb8AS-jj4A</recordid><startdate>19900501</startdate><enddate>19900501</enddate><creator>Papadakis, Nikiforos A</creator><creator>Perakis, Anastassios N</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19900501</creationdate><title>Deterministic Minimal Time Vessel Routing</title><author>Papadakis, Nikiforos A ; Perakis, Anastassios N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-be0c9815e89d95c742ceef54d848723ce09e0dacb8e457264d490568d09e360d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Adjoints</topic><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Constraints</topic><topic>dynamic programming: optimal control</topic><topic>Equations of state</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Lagrange multiplier</topic><topic>Line segments</topic><topic>Mathematical models</topic><topic>Minimum</topic><topic>Movement</topic><topic>Necessary conditions</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimal</topic><topic>Optimal control</topic><topic>Routing</topic><topic>Sailing</topic><topic>Ships</topic><topic>Theory</topic><topic>Time</topic><topic>Time dependence</topic><topic>Trajectories</topic><topic>transportation: route selection</topic><topic>water transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadakis, Nikiforos A</creatorcontrib><creatorcontrib>Perakis, Anastassios N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadakis, Nikiforos A</au><au>Perakis, Anastassios N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic Minimal Time Vessel Routing</atitle><jtitle>Operations research</jtitle><date>1990-05-01</date><risdate>1990</risdate><volume>38</volume><issue>3</issue><spage>426</spage><epage>438</epage><pages>426-438</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the velocity of the traveling vessel within each subregion depends only on the direction of motion. Variational calculus is used to derive the geometry of piecewise linear extremals. For the time dependent problem, the speed of the vessel within each subregion is assumed to be a known function of time and the direction of motion. Optimal control theory is used to reveal the nature of piecewise continuous optimal policies.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/opre.38.3.426</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 1990-05, Vol.38 (3), p.426-438 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_highwire_informs_opres_38_3_426 |
source | Jstor Complete Legacy; INFORMS PubsOnLine; Business Source Complete; Periodicals Index Online |
subjects | Adjoints Applied sciences Boundary conditions Constraints dynamic programming: optimal control Equations of state Exact sciences and technology Flows in networks. Combinatorial problems Lagrange multiplier Line segments Mathematical models Minimum Movement Necessary conditions Operational research and scientific management Operational research. Management science Operations research Optimal Optimal control Routing Sailing Ships Theory Time Time dependence Trajectories transportation: route selection water transportation |
title | Deterministic Minimal Time Vessel Routing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20Minimal%20Time%20Vessel%20Routing&rft.jtitle=Operations%20research&rft.au=Papadakis,%20Nikiforos%20A&rft.date=1990-05-01&rft.volume=38&rft.issue=3&rft.spage=426&rft.epage=438&rft.pages=426-438&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.38.3.426&rft_dat=%3Cjstor_highw%3E171356%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219171064&rft_id=info:pmid/&rft_jstor_id=171356&rfr_iscdi=true |