Deterministic Minimal Time Vessel Routing

We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 1990-05, Vol.38 (3), p.426-438
Hauptverfasser: Papadakis, Nikiforos A, Perakis, Anastassios N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 3
container_start_page 426
container_title Operations research
container_volume 38
creator Papadakis, Nikiforos A
Perakis, Anastassios N
description We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the velocity of the traveling vessel within each subregion depends only on the direction of motion. Variational calculus is used to derive the geometry of piecewise linear extremals. For the time dependent problem, the speed of the vessel within each subregion is assumed to be a known function of time and the direction of motion. Optimal control theory is used to reveal the nature of piecewise continuous optimal policies.
doi_str_mv 10.1287/opre.38.3.426
format Article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_informs_opres_38_3_426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>171356</jstor_id><sourcerecordid>171356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-be0c9815e89d95c742ceef54d848723ce09e0dacb8e457264d490568d09e360d3</originalsourceid><addsrcrecordid>eNqFkMtLw0AQxhdRsFaPnrwERUEwcd-Po9QnVASp4m1JN5t2S5rU3RTxv3dDKj2Jpxnm-803zAfAMYIZwlJcNytvMyIzklHMd8AAMcxTRjnZBQMICUwJpx_74CCEBYRQMc4G4PLWttYvXe1C60zyHJtlXiUTt7TJuw3BVslrs25dPTsEe2VeBXu0qUPwdn83GT2m45eHp9HNODVU0DadWmiURMxKVShmBMXG2pLRQlIpMDEWKguL3EylpUxgTguqIOOyiHPCYUGG4LT3Xfnmc21DqxfN2tfxpMZIIYEgpxE6-wtCJL4qhBIyUmlPGd-E4G2pVz6-5781grqLTHeRaSI10TGyyJ9vXPNg8qr0eW1c2C4pgSiWOHInPbcIbeO3ukCEdS5XverqsvHL8O_Rix6fu9n8y0Xpd6_jwhb8AS-jj4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219171064</pqid></control><display><type>article</type><title>Deterministic Minimal Time Vessel Routing</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>Periodicals Index Online</source><creator>Papadakis, Nikiforos A ; Perakis, Anastassios N</creator><creatorcontrib>Papadakis, Nikiforos A ; Perakis, Anastassios N</creatorcontrib><description>We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the velocity of the traveling vessel within each subregion depends only on the direction of motion. Variational calculus is used to derive the geometry of piecewise linear extremals. For the time dependent problem, the speed of the vessel within each subregion is assumed to be a known function of time and the direction of motion. Optimal control theory is used to reveal the nature of piecewise continuous optimal policies.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.38.3.426</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Adjoints ; Applied sciences ; Boundary conditions ; Constraints ; dynamic programming: optimal control ; Equations of state ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Lagrange multiplier ; Line segments ; Mathematical models ; Minimum ; Movement ; Necessary conditions ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimal ; Optimal control ; Routing ; Sailing ; Ships ; Theory ; Time ; Time dependence ; Trajectories ; transportation: route selection ; water transportation</subject><ispartof>Operations research, 1990-05, Vol.38 (3), p.426-438</ispartof><rights>Copyright 1990 The Operations Research Society of America</rights><rights>1991 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences May/Jun 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-be0c9815e89d95c742ceef54d848723ce09e0dacb8e457264d490568d09e360d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/171356$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.38.3.426$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27848,27903,27904,57995,58228,62592</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19714282$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Papadakis, Nikiforos A</creatorcontrib><creatorcontrib>Perakis, Anastassios N</creatorcontrib><title>Deterministic Minimal Time Vessel Routing</title><title>Operations research</title><description>We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the velocity of the traveling vessel within each subregion depends only on the direction of motion. Variational calculus is used to derive the geometry of piecewise linear extremals. For the time dependent problem, the speed of the vessel within each subregion is assumed to be a known function of time and the direction of motion. Optimal control theory is used to reveal the nature of piecewise continuous optimal policies.</description><subject>Adjoints</subject><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Constraints</subject><subject>dynamic programming: optimal control</subject><subject>Equations of state</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Lagrange multiplier</subject><subject>Line segments</subject><subject>Mathematical models</subject><subject>Minimum</subject><subject>Movement</subject><subject>Necessary conditions</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimal</subject><subject>Optimal control</subject><subject>Routing</subject><subject>Sailing</subject><subject>Ships</subject><subject>Theory</subject><subject>Time</subject><subject>Time dependence</subject><subject>Trajectories</subject><subject>transportation: route selection</subject><subject>water transportation</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkMtLw0AQxhdRsFaPnrwERUEwcd-Po9QnVASp4m1JN5t2S5rU3RTxv3dDKj2Jpxnm-803zAfAMYIZwlJcNytvMyIzklHMd8AAMcxTRjnZBQMICUwJpx_74CCEBYRQMc4G4PLWttYvXe1C60zyHJtlXiUTt7TJuw3BVslrs25dPTsEe2VeBXu0qUPwdn83GT2m45eHp9HNODVU0DadWmiURMxKVShmBMXG2pLRQlIpMDEWKguL3EylpUxgTguqIOOyiHPCYUGG4LT3Xfnmc21DqxfN2tfxpMZIIYEgpxE6-wtCJL4qhBIyUmlPGd-E4G2pVz6-5781grqLTHeRaSI10TGyyJ9vXPNg8qr0eW1c2C4pgSiWOHInPbcIbeO3ukCEdS5XverqsvHL8O_Rix6fu9n8y0Xpd6_jwhb8AS-jj4A</recordid><startdate>19900501</startdate><enddate>19900501</enddate><creator>Papadakis, Nikiforos A</creator><creator>Perakis, Anastassios N</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19900501</creationdate><title>Deterministic Minimal Time Vessel Routing</title><author>Papadakis, Nikiforos A ; Perakis, Anastassios N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-be0c9815e89d95c742ceef54d848723ce09e0dacb8e457264d490568d09e360d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Adjoints</topic><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Constraints</topic><topic>dynamic programming: optimal control</topic><topic>Equations of state</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Lagrange multiplier</topic><topic>Line segments</topic><topic>Mathematical models</topic><topic>Minimum</topic><topic>Movement</topic><topic>Necessary conditions</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimal</topic><topic>Optimal control</topic><topic>Routing</topic><topic>Sailing</topic><topic>Ships</topic><topic>Theory</topic><topic>Time</topic><topic>Time dependence</topic><topic>Trajectories</topic><topic>transportation: route selection</topic><topic>water transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadakis, Nikiforos A</creatorcontrib><creatorcontrib>Perakis, Anastassios N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadakis, Nikiforos A</au><au>Perakis, Anastassios N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic Minimal Time Vessel Routing</atitle><jtitle>Operations research</jtitle><date>1990-05-01</date><risdate>1990</risdate><volume>38</volume><issue>3</issue><spage>426</spage><epage>438</epage><pages>426-438</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>We develop general methodologies for the minimal time routing problem of a vessel moving in stationary or time dependent environments, respectively. Local optimality considerations, combined with global boundary conditions, result in piecewise continuous optimal policies. In the stationary case, the velocity of the traveling vessel within each subregion depends only on the direction of motion. Variational calculus is used to derive the geometry of piecewise linear extremals. For the time dependent problem, the speed of the vessel within each subregion is assumed to be a known function of time and the direction of motion. Optimal control theory is used to reveal the nature of piecewise continuous optimal policies.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/opre.38.3.426</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 1990-05, Vol.38 (3), p.426-438
issn 0030-364X
1526-5463
language eng
recordid cdi_highwire_informs_opres_38_3_426
source Jstor Complete Legacy; INFORMS PubsOnLine; Business Source Complete; Periodicals Index Online
subjects Adjoints
Applied sciences
Boundary conditions
Constraints
dynamic programming: optimal control
Equations of state
Exact sciences and technology
Flows in networks. Combinatorial problems
Lagrange multiplier
Line segments
Mathematical models
Minimum
Movement
Necessary conditions
Operational research and scientific management
Operational research. Management science
Operations research
Optimal
Optimal control
Routing
Sailing
Ships
Theory
Time
Time dependence
Trajectories
transportation: route selection
water transportation
title Deterministic Minimal Time Vessel Routing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20Minimal%20Time%20Vessel%20Routing&rft.jtitle=Operations%20research&rft.au=Papadakis,%20Nikiforos%20A&rft.date=1990-05-01&rft.volume=38&rft.issue=3&rft.spage=426&rft.epage=438&rft.pages=426-438&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.38.3.426&rft_dat=%3Cjstor_highw%3E171356%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219171064&rft_id=info:pmid/&rft_jstor_id=171356&rfr_iscdi=true