In Vivo Control of Diabetogenic T-Cells by Regulatory CD4+CD25+ T-Cells Expressing Foxp3

In Vivo Control of Diabetogenic T-Cells by Regulatory CD4 + CD25 + T-Cells Expressing Foxp3 Dorthe Lundsgaard , Thomas Lindebo Holm , Lars Hornum and Helle Markholst From the Hagedorn Research Institute, Gentofte, Denmark Address correspondence and reprint requests to Helle Markholst, MD, Hagedorn R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2005-04, Vol.54 (4), p.1040-1047
Hauptverfasser: LUNDSGAARD, Dorthe, HOLM, Thomas Lindebo, HORNUM, Lars, MARKHOLST, Helle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1047
container_issue 4
container_start_page 1040
container_title Diabetes (New York, N.Y.)
container_volume 54
creator LUNDSGAARD, Dorthe
HOLM, Thomas Lindebo
HORNUM, Lars
MARKHOLST, Helle
description In Vivo Control of Diabetogenic T-Cells by Regulatory CD4 + CD25 + T-Cells Expressing Foxp3 Dorthe Lundsgaard , Thomas Lindebo Holm , Lars Hornum and Helle Markholst From the Hagedorn Research Institute, Gentofte, Denmark Address correspondence and reprint requests to Helle Markholst, MD, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820, Gentofte, Denmark. E-mail: hmar{at}hagedorn.dk Abstract To understand the ability of regulatory T-cells to control diabetes development in clinically relevant situations, we established a new model of accelerated diabetes in young DP-BB rats by transferring purified T-cells from DR-BB rats made acutely diabetic. Transfer of 3, 5, 10, or 23 million pure in vitro−activated T-cells accelerated diabetes onset in >90% of the recipients, with the degree of acceleration being dosage dependent. Cotransfer of unfractionated leukocytes from healthy donors prevented diabetes. Full protection was achieved when protective cells were transferred 3–4 days before diabetogenic cells, whereas transfer 2 days before conferred only partial protection. Protection resided in the CD4 + fraction, as purified CD4 + T-cells prevented the accelerated diabetes. When CD25 + cells were depleted from these cells before they were transferred, their ability to prevent diabetes was impaired. In contrast, two million CD4 + CD25 + cells (expressing Foxp3 ) prevented the accelerated diabetes when transferred both before and simultaneously with the diabetogenic T-cells. In addition, 2 million CD4 + CD25 + T-cells prevented spontaneous diabetes, even when given to rats age 42 days, whereas 20 million CD4 + CD25 − cells (with low Foxp3 expression) were far less effective. We thus demonstrated that CD4 + CD25 + cells exhibit powerful regulatory potential in rat diabetes. CFDA-SE carboxyfluorescein diacetate, succinimidyl ester cLN, cervical lymph node CTO, CellTracker Orange MFI, mean fluorescence intensity mLN, mesenteric lymph node panLN, pancreatic lymph node PE, phycoerythrin PMA, phorbol myristate acetate Footnotes D.L., T.L.H., L.H., and H.M. are employed by Novo Nordisk A/S; D.L., L.H., and H.M. hold stock in Novo Nordisk A/S; and Novo Nordisk A/S has contributed funds supporting the work of H.M.’s laboratory. Accepted January 5, 2005. Received June 21, 2004. DIABETES
doi_str_mv 10.2337/diabetes.54.4.1040
format Article
fullrecord <record><control><sourceid>pubmed_highw</sourceid><recordid>TN_cdi_highwire_diabetes_diabetes_54_4_1040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15793242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e7993b2524cd56706b5cc15b87d49264e3168724e06cf2d61317063a40bf01713</originalsourceid><addsrcrecordid>eNptkM1OwkAURidGI4i-gAszG1ekdf6HLk0BJSExMWjYNdPptIwpbTNTFN7eIigbcxd3cc93v-QAcItRSCiVD5lVqWmNDzkLWYgRQ2egjyMaBZTI5TnoI4RJgGUke-DK-w-EkOjmEvQwlxEljPTBclbBd_tZw7iuWleXsM7h-OdvXZjKargIYlOWHqY7-GqKTana2u1gPGbDeEz48O8-2TbOeG-rAk7rbUOvwUWuSm9ujnsA3qaTRfwczF-eZvHjPNBUyDYwMopoSjhhOuNCIpFyrTFPRzJjERHMUCxGkjCDhM5JJjDFHUQVQ2mOsMR0AMjhr3a1987kSePsWrldglGy15T8ako4S1iy19SF7g6hZpOuTXaKHL10wP0RUF6rMneq0tafOCE4J2jfPjxwK1usvqwzp7Z_ar8BtlZ-Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Vivo Control of Diabetogenic T-Cells by Regulatory CD4+CD25+ T-Cells Expressing Foxp3</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>LUNDSGAARD, Dorthe ; HOLM, Thomas Lindebo ; HORNUM, Lars ; MARKHOLST, Helle</creator><creatorcontrib>LUNDSGAARD, Dorthe ; HOLM, Thomas Lindebo ; HORNUM, Lars ; MARKHOLST, Helle</creatorcontrib><description>In Vivo Control of Diabetogenic T-Cells by Regulatory CD4 + CD25 + T-Cells Expressing Foxp3 Dorthe Lundsgaard , Thomas Lindebo Holm , Lars Hornum and Helle Markholst From the Hagedorn Research Institute, Gentofte, Denmark Address correspondence and reprint requests to Helle Markholst, MD, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820, Gentofte, Denmark. E-mail: hmar{at}hagedorn.dk Abstract To understand the ability of regulatory T-cells to control diabetes development in clinically relevant situations, we established a new model of accelerated diabetes in young DP-BB rats by transferring purified T-cells from DR-BB rats made acutely diabetic. Transfer of 3, 5, 10, or 23 million pure in vitro−activated T-cells accelerated diabetes onset in &gt;90% of the recipients, with the degree of acceleration being dosage dependent. Cotransfer of unfractionated leukocytes from healthy donors prevented diabetes. Full protection was achieved when protective cells were transferred 3–4 days before diabetogenic cells, whereas transfer 2 days before conferred only partial protection. Protection resided in the CD4 + fraction, as purified CD4 + T-cells prevented the accelerated diabetes. When CD25 + cells were depleted from these cells before they were transferred, their ability to prevent diabetes was impaired. In contrast, two million CD4 + CD25 + cells (expressing Foxp3 ) prevented the accelerated diabetes when transferred both before and simultaneously with the diabetogenic T-cells. In addition, 2 million CD4 + CD25 + T-cells prevented spontaneous diabetes, even when given to rats age 42 days, whereas 20 million CD4 + CD25 − cells (with low Foxp3 expression) were far less effective. We thus demonstrated that CD4 + CD25 + cells exhibit powerful regulatory potential in rat diabetes. CFDA-SE carboxyfluorescein diacetate, succinimidyl ester cLN, cervical lymph node CTO, CellTracker Orange MFI, mean fluorescence intensity mLN, mesenteric lymph node panLN, pancreatic lymph node PE, phycoerythrin PMA, phorbol myristate acetate Footnotes D.L., T.L.H., L.H., and H.M. are employed by Novo Nordisk A/S; D.L., L.H., and H.M. hold stock in Novo Nordisk A/S; and Novo Nordisk A/S has contributed funds supporting the work of H.M.’s laboratory. Accepted January 5, 2005. Received June 21, 2004. DIABETES</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/diabetes.54.4.1040</identifier><identifier>PMID: 15793242</identifier><identifier>CODEN: DIAEAZ</identifier><language>eng</language><publisher>Alexandria, VA: American Diabetes Association</publisher><subject>Adoptive Transfer ; Aging ; Animals ; Biological and medical sciences ; CD4 Antigens - physiology ; Diabetes Mellitus, Type 1 - immunology ; Diabetes Mellitus, Type 1 - prevention &amp; control ; Diabetes. Impaired glucose tolerance ; DNA-Binding Proteins - physiology ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Forkhead Transcription Factors ; Gene Expression ; Ionomycin ; Lymphocyte Activation - physiology ; Medical sciences ; Prediabetic State ; Rats ; Receptors, Interleukin-2 - physiology ; T-Lymphocyte Subsets - physiology ; T-Lymphocyte Subsets - transplantation ; Tetradecanoylphorbol Acetate ; Transcription Factors - physiology</subject><ispartof>Diabetes (New York, N.Y.), 2005-04, Vol.54 (4), p.1040-1047</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e7993b2524cd56706b5cc15b87d49264e3168724e06cf2d61317063a40bf01713</citedby><cites>FETCH-LOGICAL-c367t-e7993b2524cd56706b5cc15b87d49264e3168724e06cf2d61317063a40bf01713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16655201$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15793242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LUNDSGAARD, Dorthe</creatorcontrib><creatorcontrib>HOLM, Thomas Lindebo</creatorcontrib><creatorcontrib>HORNUM, Lars</creatorcontrib><creatorcontrib>MARKHOLST, Helle</creatorcontrib><title>In Vivo Control of Diabetogenic T-Cells by Regulatory CD4+CD25+ T-Cells Expressing Foxp3</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>In Vivo Control of Diabetogenic T-Cells by Regulatory CD4 + CD25 + T-Cells Expressing Foxp3 Dorthe Lundsgaard , Thomas Lindebo Holm , Lars Hornum and Helle Markholst From the Hagedorn Research Institute, Gentofte, Denmark Address correspondence and reprint requests to Helle Markholst, MD, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820, Gentofte, Denmark. E-mail: hmar{at}hagedorn.dk Abstract To understand the ability of regulatory T-cells to control diabetes development in clinically relevant situations, we established a new model of accelerated diabetes in young DP-BB rats by transferring purified T-cells from DR-BB rats made acutely diabetic. Transfer of 3, 5, 10, or 23 million pure in vitro−activated T-cells accelerated diabetes onset in &gt;90% of the recipients, with the degree of acceleration being dosage dependent. Cotransfer of unfractionated leukocytes from healthy donors prevented diabetes. Full protection was achieved when protective cells were transferred 3–4 days before diabetogenic cells, whereas transfer 2 days before conferred only partial protection. Protection resided in the CD4 + fraction, as purified CD4 + T-cells prevented the accelerated diabetes. When CD25 + cells were depleted from these cells before they were transferred, their ability to prevent diabetes was impaired. In contrast, two million CD4 + CD25 + cells (expressing Foxp3 ) prevented the accelerated diabetes when transferred both before and simultaneously with the diabetogenic T-cells. In addition, 2 million CD4 + CD25 + T-cells prevented spontaneous diabetes, even when given to rats age 42 days, whereas 20 million CD4 + CD25 − cells (with low Foxp3 expression) were far less effective. We thus demonstrated that CD4 + CD25 + cells exhibit powerful regulatory potential in rat diabetes. CFDA-SE carboxyfluorescein diacetate, succinimidyl ester cLN, cervical lymph node CTO, CellTracker Orange MFI, mean fluorescence intensity mLN, mesenteric lymph node panLN, pancreatic lymph node PE, phycoerythrin PMA, phorbol myristate acetate Footnotes D.L., T.L.H., L.H., and H.M. are employed by Novo Nordisk A/S; D.L., L.H., and H.M. hold stock in Novo Nordisk A/S; and Novo Nordisk A/S has contributed funds supporting the work of H.M.’s laboratory. Accepted January 5, 2005. Received June 21, 2004. DIABETES</description><subject>Adoptive Transfer</subject><subject>Aging</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>CD4 Antigens - physiology</subject><subject>Diabetes Mellitus, Type 1 - immunology</subject><subject>Diabetes Mellitus, Type 1 - prevention &amp; control</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Forkhead Transcription Factors</subject><subject>Gene Expression</subject><subject>Ionomycin</subject><subject>Lymphocyte Activation - physiology</subject><subject>Medical sciences</subject><subject>Prediabetic State</subject><subject>Rats</subject><subject>Receptors, Interleukin-2 - physiology</subject><subject>T-Lymphocyte Subsets - physiology</subject><subject>T-Lymphocyte Subsets - transplantation</subject><subject>Tetradecanoylphorbol Acetate</subject><subject>Transcription Factors - physiology</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1OwkAURidGI4i-gAszG1ekdf6HLk0BJSExMWjYNdPptIwpbTNTFN7eIigbcxd3cc93v-QAcItRSCiVD5lVqWmNDzkLWYgRQ2egjyMaBZTI5TnoI4RJgGUke-DK-w-EkOjmEvQwlxEljPTBclbBd_tZw7iuWleXsM7h-OdvXZjKargIYlOWHqY7-GqKTana2u1gPGbDeEz48O8-2TbOeG-rAk7rbUOvwUWuSm9ujnsA3qaTRfwczF-eZvHjPNBUyDYwMopoSjhhOuNCIpFyrTFPRzJjERHMUCxGkjCDhM5JJjDFHUQVQ2mOsMR0AMjhr3a1987kSePsWrldglGy15T8ako4S1iy19SF7g6hZpOuTXaKHL10wP0RUF6rMneq0tafOCE4J2jfPjxwK1usvqwzp7Z_ar8BtlZ-Zw</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>LUNDSGAARD, Dorthe</creator><creator>HOLM, Thomas Lindebo</creator><creator>HORNUM, Lars</creator><creator>MARKHOLST, Helle</creator><general>American Diabetes Association</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050401</creationdate><title>In Vivo Control of Diabetogenic T-Cells by Regulatory CD4+CD25+ T-Cells Expressing Foxp3</title><author>LUNDSGAARD, Dorthe ; HOLM, Thomas Lindebo ; HORNUM, Lars ; MARKHOLST, Helle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e7993b2524cd56706b5cc15b87d49264e3168724e06cf2d61317063a40bf01713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adoptive Transfer</topic><topic>Aging</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>CD4 Antigens - physiology</topic><topic>Diabetes Mellitus, Type 1 - immunology</topic><topic>Diabetes Mellitus, Type 1 - prevention &amp; control</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Forkhead Transcription Factors</topic><topic>Gene Expression</topic><topic>Ionomycin</topic><topic>Lymphocyte Activation - physiology</topic><topic>Medical sciences</topic><topic>Prediabetic State</topic><topic>Rats</topic><topic>Receptors, Interleukin-2 - physiology</topic><topic>T-Lymphocyte Subsets - physiology</topic><topic>T-Lymphocyte Subsets - transplantation</topic><topic>Tetradecanoylphorbol Acetate</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LUNDSGAARD, Dorthe</creatorcontrib><creatorcontrib>HOLM, Thomas Lindebo</creatorcontrib><creatorcontrib>HORNUM, Lars</creatorcontrib><creatorcontrib>MARKHOLST, Helle</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LUNDSGAARD, Dorthe</au><au>HOLM, Thomas Lindebo</au><au>HORNUM, Lars</au><au>MARKHOLST, Helle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Control of Diabetogenic T-Cells by Regulatory CD4+CD25+ T-Cells Expressing Foxp3</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>54</volume><issue>4</issue><spage>1040</spage><epage>1047</epage><pages>1040-1047</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><coden>DIAEAZ</coden><abstract>In Vivo Control of Diabetogenic T-Cells by Regulatory CD4 + CD25 + T-Cells Expressing Foxp3 Dorthe Lundsgaard , Thomas Lindebo Holm , Lars Hornum and Helle Markholst From the Hagedorn Research Institute, Gentofte, Denmark Address correspondence and reprint requests to Helle Markholst, MD, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820, Gentofte, Denmark. E-mail: hmar{at}hagedorn.dk Abstract To understand the ability of regulatory T-cells to control diabetes development in clinically relevant situations, we established a new model of accelerated diabetes in young DP-BB rats by transferring purified T-cells from DR-BB rats made acutely diabetic. Transfer of 3, 5, 10, or 23 million pure in vitro−activated T-cells accelerated diabetes onset in &gt;90% of the recipients, with the degree of acceleration being dosage dependent. Cotransfer of unfractionated leukocytes from healthy donors prevented diabetes. Full protection was achieved when protective cells were transferred 3–4 days before diabetogenic cells, whereas transfer 2 days before conferred only partial protection. Protection resided in the CD4 + fraction, as purified CD4 + T-cells prevented the accelerated diabetes. When CD25 + cells were depleted from these cells before they were transferred, their ability to prevent diabetes was impaired. In contrast, two million CD4 + CD25 + cells (expressing Foxp3 ) prevented the accelerated diabetes when transferred both before and simultaneously with the diabetogenic T-cells. In addition, 2 million CD4 + CD25 + T-cells prevented spontaneous diabetes, even when given to rats age 42 days, whereas 20 million CD4 + CD25 − cells (with low Foxp3 expression) were far less effective. We thus demonstrated that CD4 + CD25 + cells exhibit powerful regulatory potential in rat diabetes. CFDA-SE carboxyfluorescein diacetate, succinimidyl ester cLN, cervical lymph node CTO, CellTracker Orange MFI, mean fluorescence intensity mLN, mesenteric lymph node panLN, pancreatic lymph node PE, phycoerythrin PMA, phorbol myristate acetate Footnotes D.L., T.L.H., L.H., and H.M. are employed by Novo Nordisk A/S; D.L., L.H., and H.M. hold stock in Novo Nordisk A/S; and Novo Nordisk A/S has contributed funds supporting the work of H.M.’s laboratory. Accepted January 5, 2005. Received June 21, 2004. DIABETES</abstract><cop>Alexandria, VA</cop><pub>American Diabetes Association</pub><pmid>15793242</pmid><doi>10.2337/diabetes.54.4.1040</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2005-04, Vol.54 (4), p.1040-1047
issn 0012-1797
1939-327X
language eng
recordid cdi_highwire_diabetes_diabetes_54_4_1040
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adoptive Transfer
Aging
Animals
Biological and medical sciences
CD4 Antigens - physiology
Diabetes Mellitus, Type 1 - immunology
Diabetes Mellitus, Type 1 - prevention & control
Diabetes. Impaired glucose tolerance
DNA-Binding Proteins - physiology
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Forkhead Transcription Factors
Gene Expression
Ionomycin
Lymphocyte Activation - physiology
Medical sciences
Prediabetic State
Rats
Receptors, Interleukin-2 - physiology
T-Lymphocyte Subsets - physiology
T-Lymphocyte Subsets - transplantation
Tetradecanoylphorbol Acetate
Transcription Factors - physiology
title In Vivo Control of Diabetogenic T-Cells by Regulatory CD4+CD25+ T-Cells Expressing Foxp3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Control%20of%20Diabetogenic%20T-Cells%20by%20Regulatory%20CD4+CD25+%20T-Cells%20Expressing%20Foxp3&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=LUNDSGAARD,%20Dorthe&rft.date=2005-04-01&rft.volume=54&rft.issue=4&rft.spage=1040&rft.epage=1047&rft.pages=1040-1047&rft.issn=0012-1797&rft.eissn=1939-327X&rft.coden=DIAEAZ&rft_id=info:doi/10.2337/diabetes.54.4.1040&rft_dat=%3Cpubmed_highw%3E15793242%3C/pubmed_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15793242&rfr_iscdi=true