The Presence of an Iron-Sulfur Cluster in Adenosine 5′-Phosphosulfate Reductase Separates Organisms Utilizing Adenosine 5′-Phosphosulfate and Phosphoadenosine 5′-Phosphosulfate for Sulfate Assimilation

It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5′-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5′-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25–30% identical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-06, Vol.277 (24), p.21786
Hauptverfasser: Stanislav Kopriva, Thomas Büchert, Günter Fritz, Marianne Suter, Rüdiger Benda, Volker Schünemann, Anna Koprivova, Peter Schürmann, Alfred X. Trautwein, Peter M. H. Kroneck, Christian Brunold
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 21786
container_title The Journal of biological chemistry
container_volume 277
creator Stanislav Kopriva
Thomas Büchert
Günter Fritz
Marianne Suter
Rüdiger Benda
Volker Schünemann
Anna Koprivova
Peter Schürmann
Alfred X. Trautwein
Peter M. H. Kroneck
Christian Brunold
description It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5′-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5′-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25–30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organisms, which were retrieved from the GenBank TM , revealed two clusters. The first cluster comprised known PAPS reductases from enteric bacteria, cyanobacteria, and yeast. On the other hand, plant APS reductase sequences were clustered together with many bacterial ones, including those from Pseudomonas and Rhizobium . The gene for APS reductase cloned from the APS-reducing cyanobacterium Plectonema also clustered together with the plant sequences, confirming that the two classes of sequences represent PAPS and APS reductases, respectively. Compared with the PAPS reductase, all sequences of the APS reductase cluster contained two additional cysteine pairs homologous to the cysteine residues involved in binding an iron-sulfur cluster in plants. Mössbauer analysis revealed that the recombinant APS reductase from Pseudomonas aeruginosa contains a [4Fe-4S] cluster with the same characteristics as the plant enzyme. We conclude, therefore, that the presence of an iron-sulfur cluster determines the APS specificity of the sulfate-reducing enzymes and thus separates the APS- and PAPS-dependent assimilatory sulfate reduction pathways.
doi_str_mv 10.1074/jbc.M202152200
format Article
fullrecord <record><control><sourceid>highwire</sourceid><recordid>TN_cdi_highwire_biochem_277_24_21786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>277_24_21786</sourcerecordid><originalsourceid>FETCH-highwire_biochem_277_24_217863</originalsourceid><addsrcrecordid>eNqNjM1Kw0AUhQdRbPzZur4Lt6kzk8Qky1IUXYjFVHAXpslNMiWZKXMTBFc-i4_gI9SX8HHMIvt64XAOHx-XsSvB54LH4c12U8yfJJcikpLzI-YJngR-EIm3Y-bxkfupjJIZOyPa8vHCVJyymRBpyKM08djvukFYOSQ0BYKtQBl4dNb42dBWg4NlO1CPDrSBRYnGkjYI0c_X_nP_7a8aS7sxo6p6hBcsh6JXhJDhTrkRETy7WhlNHcFrr1v9oU19-JEyJUxIHXIr6yCb9oJId7pVvbbmgp1UqiW8nPqcXd_frZcPfqPr5l07zDfaFg12uYzjXIa5FHFyG_xT-wOxV3_q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Presence of an Iron-Sulfur Cluster in Adenosine 5′-Phosphosulfate Reductase Separates Organisms Utilizing Adenosine 5′-Phosphosulfate and Phosphoadenosine 5′-Phosphosulfate for Sulfate Assimilation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Stanislav Kopriva ; Thomas Büchert ; Günter Fritz ; Marianne Suter ; Rüdiger Benda ; Volker Schünemann ; Anna Koprivova ; Peter Schürmann ; Alfred X. Trautwein ; Peter M. H. Kroneck ; Christian Brunold</creator><creatorcontrib>Stanislav Kopriva ; Thomas Büchert ; Günter Fritz ; Marianne Suter ; Rüdiger Benda ; Volker Schünemann ; Anna Koprivova ; Peter Schürmann ; Alfred X. Trautwein ; Peter M. H. Kroneck ; Christian Brunold</creatorcontrib><description>It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5′-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5′-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25–30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organisms, which were retrieved from the GenBank TM , revealed two clusters. The first cluster comprised known PAPS reductases from enteric bacteria, cyanobacteria, and yeast. On the other hand, plant APS reductase sequences were clustered together with many bacterial ones, including those from Pseudomonas and Rhizobium . The gene for APS reductase cloned from the APS-reducing cyanobacterium Plectonema also clustered together with the plant sequences, confirming that the two classes of sequences represent PAPS and APS reductases, respectively. Compared with the PAPS reductase, all sequences of the APS reductase cluster contained two additional cysteine pairs homologous to the cysteine residues involved in binding an iron-sulfur cluster in plants. Mössbauer analysis revealed that the recombinant APS reductase from Pseudomonas aeruginosa contains a [4Fe-4S] cluster with the same characteristics as the plant enzyme. We conclude, therefore, that the presence of an iron-sulfur cluster determines the APS specificity of the sulfate-reducing enzymes and thus separates the APS- and PAPS-dependent assimilatory sulfate reduction pathways.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M202152200</identifier><identifier>PMID: 11940598</identifier><language>eng</language><publisher>American Society for Biochemistry and Molecular Biology</publisher><ispartof>The Journal of biological chemistry, 2002-06, Vol.277 (24), p.21786</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Stanislav Kopriva</creatorcontrib><creatorcontrib>Thomas Büchert</creatorcontrib><creatorcontrib>Günter Fritz</creatorcontrib><creatorcontrib>Marianne Suter</creatorcontrib><creatorcontrib>Rüdiger Benda</creatorcontrib><creatorcontrib>Volker Schünemann</creatorcontrib><creatorcontrib>Anna Koprivova</creatorcontrib><creatorcontrib>Peter Schürmann</creatorcontrib><creatorcontrib>Alfred X. Trautwein</creatorcontrib><creatorcontrib>Peter M. H. Kroneck</creatorcontrib><creatorcontrib>Christian Brunold</creatorcontrib><title>The Presence of an Iron-Sulfur Cluster in Adenosine 5′-Phosphosulfate Reductase Separates Organisms Utilizing Adenosine 5′-Phosphosulfate and Phosphoadenosine 5′-Phosphosulfate for Sulfate Assimilation</title><title>The Journal of biological chemistry</title><description>It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5′-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5′-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25–30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organisms, which were retrieved from the GenBank TM , revealed two clusters. The first cluster comprised known PAPS reductases from enteric bacteria, cyanobacteria, and yeast. On the other hand, plant APS reductase sequences were clustered together with many bacterial ones, including those from Pseudomonas and Rhizobium . The gene for APS reductase cloned from the APS-reducing cyanobacterium Plectonema also clustered together with the plant sequences, confirming that the two classes of sequences represent PAPS and APS reductases, respectively. Compared with the PAPS reductase, all sequences of the APS reductase cluster contained two additional cysteine pairs homologous to the cysteine residues involved in binding an iron-sulfur cluster in plants. Mössbauer analysis revealed that the recombinant APS reductase from Pseudomonas aeruginosa contains a [4Fe-4S] cluster with the same characteristics as the plant enzyme. We conclude, therefore, that the presence of an iron-sulfur cluster determines the APS specificity of the sulfate-reducing enzymes and thus separates the APS- and PAPS-dependent assimilatory sulfate reduction pathways.</description><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNjM1Kw0AUhQdRbPzZur4Lt6kzk8Qky1IUXYjFVHAXpslNMiWZKXMTBFc-i4_gI9SX8HHMIvt64XAOHx-XsSvB54LH4c12U8yfJJcikpLzI-YJngR-EIm3Y-bxkfupjJIZOyPa8vHCVJyymRBpyKM08djvukFYOSQ0BYKtQBl4dNb42dBWg4NlO1CPDrSBRYnGkjYI0c_X_nP_7a8aS7sxo6p6hBcsh6JXhJDhTrkRETy7WhlNHcFrr1v9oU19-JEyJUxIHXIr6yCb9oJId7pVvbbmgp1UqiW8nPqcXd_frZcPfqPr5l07zDfaFg12uYzjXIa5FHFyG_xT-wOxV3_q</recordid><startdate>20020614</startdate><enddate>20020614</enddate><creator>Stanislav Kopriva</creator><creator>Thomas Büchert</creator><creator>Günter Fritz</creator><creator>Marianne Suter</creator><creator>Rüdiger Benda</creator><creator>Volker Schünemann</creator><creator>Anna Koprivova</creator><creator>Peter Schürmann</creator><creator>Alfred X. Trautwein</creator><creator>Peter M. H. Kroneck</creator><creator>Christian Brunold</creator><general>American Society for Biochemistry and Molecular Biology</general><scope/></search><sort><creationdate>20020614</creationdate><title>The Presence of an Iron-Sulfur Cluster in Adenosine 5′-Phosphosulfate Reductase Separates Organisms Utilizing Adenosine 5′-Phosphosulfate and Phosphoadenosine 5′-Phosphosulfate for Sulfate Assimilation</title><author>Stanislav Kopriva ; Thomas Büchert ; Günter Fritz ; Marianne Suter ; Rüdiger Benda ; Volker Schünemann ; Anna Koprivova ; Peter Schürmann ; Alfred X. Trautwein ; Peter M. H. Kroneck ; Christian Brunold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-highwire_biochem_277_24_217863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanislav Kopriva</creatorcontrib><creatorcontrib>Thomas Büchert</creatorcontrib><creatorcontrib>Günter Fritz</creatorcontrib><creatorcontrib>Marianne Suter</creatorcontrib><creatorcontrib>Rüdiger Benda</creatorcontrib><creatorcontrib>Volker Schünemann</creatorcontrib><creatorcontrib>Anna Koprivova</creatorcontrib><creatorcontrib>Peter Schürmann</creatorcontrib><creatorcontrib>Alfred X. Trautwein</creatorcontrib><creatorcontrib>Peter M. H. Kroneck</creatorcontrib><creatorcontrib>Christian Brunold</creatorcontrib><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanislav Kopriva</au><au>Thomas Büchert</au><au>Günter Fritz</au><au>Marianne Suter</au><au>Rüdiger Benda</au><au>Volker Schünemann</au><au>Anna Koprivova</au><au>Peter Schürmann</au><au>Alfred X. Trautwein</au><au>Peter M. H. Kroneck</au><au>Christian Brunold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Presence of an Iron-Sulfur Cluster in Adenosine 5′-Phosphosulfate Reductase Separates Organisms Utilizing Adenosine 5′-Phosphosulfate and Phosphoadenosine 5′-Phosphosulfate for Sulfate Assimilation</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2002-06-14</date><risdate>2002</risdate><volume>277</volume><issue>24</issue><spage>21786</spage><pages>21786-</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5′-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5′-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25–30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organisms, which were retrieved from the GenBank TM , revealed two clusters. The first cluster comprised known PAPS reductases from enteric bacteria, cyanobacteria, and yeast. On the other hand, plant APS reductase sequences were clustered together with many bacterial ones, including those from Pseudomonas and Rhizobium . The gene for APS reductase cloned from the APS-reducing cyanobacterium Plectonema also clustered together with the plant sequences, confirming that the two classes of sequences represent PAPS and APS reductases, respectively. Compared with the PAPS reductase, all sequences of the APS reductase cluster contained two additional cysteine pairs homologous to the cysteine residues involved in binding an iron-sulfur cluster in plants. Mössbauer analysis revealed that the recombinant APS reductase from Pseudomonas aeruginosa contains a [4Fe-4S] cluster with the same characteristics as the plant enzyme. We conclude, therefore, that the presence of an iron-sulfur cluster determines the APS specificity of the sulfate-reducing enzymes and thus separates the APS- and PAPS-dependent assimilatory sulfate reduction pathways.</abstract><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>11940598</pmid><doi>10.1074/jbc.M202152200</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2002-06, Vol.277 (24), p.21786
issn 0021-9258
1083-351X
language eng
recordid cdi_highwire_biochem_277_24_21786
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title The Presence of an Iron-Sulfur Cluster in Adenosine 5′-Phosphosulfate Reductase Separates Organisms Utilizing Adenosine 5′-Phosphosulfate and Phosphoadenosine 5′-Phosphosulfate for Sulfate Assimilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-highwire&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Presence%20of%20an%20Iron-Sulfur%20Cluster%20in%20Adenosine%205%C3%A2%C2%80%C2%B2-Phosphosulfate%20Reductase%20Separates%20Organisms%20Utilizing%20Adenosine%205%C3%A2%C2%80%C2%B2-Phosphosulfate%20and%20Phosphoadenosine%205%C3%A2%C2%80%C2%B2-Phosphosulfate%20for%20Sulfate%20Assimilation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Stanislav%20Kopriva&rft.date=2002-06-14&rft.volume=277&rft.issue=24&rft.spage=21786&rft.pages=21786-&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M202152200&rft_dat=%3Chighwire%3E277_24_21786%3C/highwire%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11940598&rfr_iscdi=true