Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)
Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficu...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2008-01, Vol.74 (2), p.462-469 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 2 |
container_start_page | 462 |
container_title | Applied and Environmental Microbiology |
container_volume | 74 |
creator | Anilkumar, Konasale J Rodrigo-Simón, Ana Ferré, Juan Pusztai-Carey, Marianne Sivasupramaniam, Sakuntala Moar, William J |
description | Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments. |
doi_str_mv | 10.1128/AEM.01612-07 |
format | Article |
fullrecord | <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_asm_aem_74_2_462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20537228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-a55844de9cc3a875c7e37b3d18a3f4e267128846d5de0290f4596609a620fbed3</originalsourceid><addsrcrecordid>eNpVkctv1DAQxi0EokvhxhlyQlQiZfyI41yQdqNCkYpAQM_WrDPZNUrirZ20av_6hu6Kx8kaz2--eXyMveRwyrkw75dnX06Bay5yKB-xBYfK5IWU-jFbAFRVLoSCI_YspV8AoECbp-yIGxBKG75g6VsMzeRGH4YMhyartxjRjRT9HT58hjZbofNdN6Vs3E7RDxtPQ_Ipq-MtX7r8O83BiMOY1WEc54pV6LqbEPvsnDrvwjXFHWZ3hNnbVWgaTyfP2ZMWu0QvDu8xu_x49rM-zy--fvpcLy9yp7QYcywKo1RDlXMSTVm4kmS5lg03KFtFQpfz-kbppmgIRAWtKiqtoUItoF1TI4_Zh73ublr31Dgaxoid3UXfY7y1Ab39PzP4rd2EayuEkEKpWeDNQSCGq4nSaHufHHUdDhSmZAUUshTCzOC7PehiSClS-6cJB_vbJTu7ZB9cslDO-Kt_B_sLH2yZgWwPbP1me-MjWUy9Reptqayw83lm5PUeaTFY3ESf7OUPAVwCGFXospL3Zv6jTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20537228</pqid></control><display><type>article</type><title>Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Anilkumar, Konasale J ; Rodrigo-Simón, Ana ; Ferré, Juan ; Pusztai-Carey, Marianne ; Sivasupramaniam, Sakuntala ; Moar, William J</creator><creatorcontrib>Anilkumar, Konasale J ; Rodrigo-Simón, Ana ; Ferré, Juan ; Pusztai-Carey, Marianne ; Sivasupramaniam, Sakuntala ; Moar, William J</creatorcontrib><description>Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.01612-07</identifier><identifier>PMID: 18024681</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Animals ; Bacillus ; Bacillus thuringiensis ; Bacillus thuringiensis - genetics ; Bacillus thuringiensis - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Toxins - genetics ; Bacterial Toxins - metabolism ; Endotoxins - genetics ; Endotoxins - metabolism ; Gossypium - genetics ; Gossypium - metabolism ; Gossypium - parasitology ; Helicoverpa zea ; Hemolysin Proteins - genetics ; Hemolysin Proteins - metabolism ; Insecticide Resistance - genetics ; Invertebrate Microbiology ; Moths - genetics ; Moths - growth & development ; Pest Control, Biological ; Plants, Genetically Modified ; Protein Binding ; Zea</subject><ispartof>Applied and Environmental Microbiology, 2008-01, Vol.74 (2), p.462-469</ispartof><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-a55844de9cc3a875c7e37b3d18a3f4e267128846d5de0290f4596609a620fbed3</citedby><cites>FETCH-LOGICAL-c462t-a55844de9cc3a875c7e37b3d18a3f4e267128846d5de0290f4596609a620fbed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223244/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223244/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,3192,3193,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18024681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anilkumar, Konasale J</creatorcontrib><creatorcontrib>Rodrigo-Simón, Ana</creatorcontrib><creatorcontrib>Ferré, Juan</creatorcontrib><creatorcontrib>Pusztai-Carey, Marianne</creatorcontrib><creatorcontrib>Sivasupramaniam, Sakuntala</creatorcontrib><creatorcontrib>Moar, William J</creatorcontrib><title>Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.</description><subject>Animals</subject><subject>Bacillus</subject><subject>Bacillus thuringiensis</subject><subject>Bacillus thuringiensis - genetics</subject><subject>Bacillus thuringiensis - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - metabolism</subject><subject>Endotoxins - genetics</subject><subject>Endotoxins - metabolism</subject><subject>Gossypium - genetics</subject><subject>Gossypium - metabolism</subject><subject>Gossypium - parasitology</subject><subject>Helicoverpa zea</subject><subject>Hemolysin Proteins - genetics</subject><subject>Hemolysin Proteins - metabolism</subject><subject>Insecticide Resistance - genetics</subject><subject>Invertebrate Microbiology</subject><subject>Moths - genetics</subject><subject>Moths - growth & development</subject><subject>Pest Control, Biological</subject><subject>Plants, Genetically Modified</subject><subject>Protein Binding</subject><subject>Zea</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctv1DAQxi0EokvhxhlyQlQiZfyI41yQdqNCkYpAQM_WrDPZNUrirZ20av_6hu6Kx8kaz2--eXyMveRwyrkw75dnX06Bay5yKB-xBYfK5IWU-jFbAFRVLoSCI_YspV8AoECbp-yIGxBKG75g6VsMzeRGH4YMhyartxjRjRT9HT58hjZbofNdN6Vs3E7RDxtPQ_Ipq-MtX7r8O83BiMOY1WEc54pV6LqbEPvsnDrvwjXFHWZ3hNnbVWgaTyfP2ZMWu0QvDu8xu_x49rM-zy--fvpcLy9yp7QYcywKo1RDlXMSTVm4kmS5lg03KFtFQpfz-kbppmgIRAWtKiqtoUItoF1TI4_Zh73ublr31Dgaxoid3UXfY7y1Ab39PzP4rd2EayuEkEKpWeDNQSCGq4nSaHufHHUdDhSmZAUUshTCzOC7PehiSClS-6cJB_vbJTu7ZB9cslDO-Kt_B_sLH2yZgWwPbP1me-MjWUy9Reptqayw83lm5PUeaTFY3ESf7OUPAVwCGFXospL3Zv6jTg</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Anilkumar, Konasale J</creator><creator>Rodrigo-Simón, Ana</creator><creator>Ferré, Juan</creator><creator>Pusztai-Carey, Marianne</creator><creator>Sivasupramaniam, Sakuntala</creator><creator>Moar, William J</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20080101</creationdate><title>Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)</title><author>Anilkumar, Konasale J ; Rodrigo-Simón, Ana ; Ferré, Juan ; Pusztai-Carey, Marianne ; Sivasupramaniam, Sakuntala ; Moar, William J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-a55844de9cc3a875c7e37b3d18a3f4e267128846d5de0290f4596609a620fbed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Bacillus</topic><topic>Bacillus thuringiensis</topic><topic>Bacillus thuringiensis - genetics</topic><topic>Bacillus thuringiensis - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - metabolism</topic><topic>Endotoxins - genetics</topic><topic>Endotoxins - metabolism</topic><topic>Gossypium - genetics</topic><topic>Gossypium - metabolism</topic><topic>Gossypium - parasitology</topic><topic>Helicoverpa zea</topic><topic>Hemolysin Proteins - genetics</topic><topic>Hemolysin Proteins - metabolism</topic><topic>Insecticide Resistance - genetics</topic><topic>Invertebrate Microbiology</topic><topic>Moths - genetics</topic><topic>Moths - growth & development</topic><topic>Pest Control, Biological</topic><topic>Plants, Genetically Modified</topic><topic>Protein Binding</topic><topic>Zea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anilkumar, Konasale J</creatorcontrib><creatorcontrib>Rodrigo-Simón, Ana</creatorcontrib><creatorcontrib>Ferré, Juan</creatorcontrib><creatorcontrib>Pusztai-Carey, Marianne</creatorcontrib><creatorcontrib>Sivasupramaniam, Sakuntala</creatorcontrib><creatorcontrib>Moar, William J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anilkumar, Konasale J</au><au>Rodrigo-Simón, Ana</au><au>Ferré, Juan</au><au>Pusztai-Carey, Marianne</au><au>Sivasupramaniam, Sakuntala</au><au>Moar, William J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>74</volume><issue>2</issue><spage>462</spage><epage>469</epage><pages>462-469</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>18024681</pmid><doi>10.1128/AEM.01612-07</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2008-01, Vol.74 (2), p.462-469 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_highwire_asm_aem_74_2_462 |
source | American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Bacillus Bacillus thuringiensis Bacillus thuringiensis - genetics Bacillus thuringiensis - metabolism Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Toxins - genetics Bacterial Toxins - metabolism Endotoxins - genetics Endotoxins - metabolism Gossypium - genetics Gossypium - metabolism Gossypium - parasitology Helicoverpa zea Hemolysin Proteins - genetics Hemolysin Proteins - metabolism Insecticide Resistance - genetics Invertebrate Microbiology Moths - genetics Moths - growth & development Pest Control, Biological Plants, Genetically Modified Protein Binding Zea |
title | Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T12%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20and%20Characterization%20of%20Bacillus%20thuringiensis%20Cry1Ac-Resistant%20Cotton%20Bollworm%20Helicoverpa%20zea%20(Boddie)&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Anilkumar,%20Konasale%20J&rft.date=2008-01-01&rft.volume=74&rft.issue=2&rft.spage=462&rft.epage=469&rft.pages=462-469&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/AEM.01612-07&rft_dat=%3Cproquest_highw%3E20537228%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20537228&rft_id=info:pmid/18024681&rfr_iscdi=true |