Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)

Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2008-01, Vol.74 (2), p.462-469
Hauptverfasser: Anilkumar, Konasale J, Rodrigo-Simón, Ana, Ferré, Juan, Pusztai-Carey, Marianne, Sivasupramaniam, Sakuntala, Moar, William J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue 2
container_start_page 462
container_title Applied and Environmental Microbiology
container_volume 74
creator Anilkumar, Konasale J
Rodrigo-Simón, Ana
Ferré, Juan
Pusztai-Carey, Marianne
Sivasupramaniam, Sakuntala
Moar, William J
description Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.
doi_str_mv 10.1128/AEM.01612-07
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_asm_aem_74_2_462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20537228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-a55844de9cc3a875c7e37b3d18a3f4e267128846d5de0290f4596609a620fbed3</originalsourceid><addsrcrecordid>eNpVkctv1DAQxi0EokvhxhlyQlQiZfyI41yQdqNCkYpAQM_WrDPZNUrirZ20av_6hu6Kx8kaz2--eXyMveRwyrkw75dnX06Bay5yKB-xBYfK5IWU-jFbAFRVLoSCI_YspV8AoECbp-yIGxBKG75g6VsMzeRGH4YMhyartxjRjRT9HT58hjZbofNdN6Vs3E7RDxtPQ_Ipq-MtX7r8O83BiMOY1WEc54pV6LqbEPvsnDrvwjXFHWZ3hNnbVWgaTyfP2ZMWu0QvDu8xu_x49rM-zy--fvpcLy9yp7QYcywKo1RDlXMSTVm4kmS5lg03KFtFQpfz-kbppmgIRAWtKiqtoUItoF1TI4_Zh73ublr31Dgaxoid3UXfY7y1Ab39PzP4rd2EayuEkEKpWeDNQSCGq4nSaHufHHUdDhSmZAUUshTCzOC7PehiSClS-6cJB_vbJTu7ZB9cslDO-Kt_B_sLH2yZgWwPbP1me-MjWUy9Reptqayw83lm5PUeaTFY3ESf7OUPAVwCGFXospL3Zv6jTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20537228</pqid></control><display><type>article</type><title>Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Anilkumar, Konasale J ; Rodrigo-Simón, Ana ; Ferré, Juan ; Pusztai-Carey, Marianne ; Sivasupramaniam, Sakuntala ; Moar, William J</creator><creatorcontrib>Anilkumar, Konasale J ; Rodrigo-Simón, Ana ; Ferré, Juan ; Pusztai-Carey, Marianne ; Sivasupramaniam, Sakuntala ; Moar, William J</creatorcontrib><description>Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.01612-07</identifier><identifier>PMID: 18024681</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Animals ; Bacillus ; Bacillus thuringiensis ; Bacillus thuringiensis - genetics ; Bacillus thuringiensis - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Toxins - genetics ; Bacterial Toxins - metabolism ; Endotoxins - genetics ; Endotoxins - metabolism ; Gossypium - genetics ; Gossypium - metabolism ; Gossypium - parasitology ; Helicoverpa zea ; Hemolysin Proteins - genetics ; Hemolysin Proteins - metabolism ; Insecticide Resistance - genetics ; Invertebrate Microbiology ; Moths - genetics ; Moths - growth &amp; development ; Pest Control, Biological ; Plants, Genetically Modified ; Protein Binding ; Zea</subject><ispartof>Applied and Environmental Microbiology, 2008-01, Vol.74 (2), p.462-469</ispartof><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-a55844de9cc3a875c7e37b3d18a3f4e267128846d5de0290f4596609a620fbed3</citedby><cites>FETCH-LOGICAL-c462t-a55844de9cc3a875c7e37b3d18a3f4e267128846d5de0290f4596609a620fbed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223244/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223244/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,3192,3193,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18024681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anilkumar, Konasale J</creatorcontrib><creatorcontrib>Rodrigo-Simón, Ana</creatorcontrib><creatorcontrib>Ferré, Juan</creatorcontrib><creatorcontrib>Pusztai-Carey, Marianne</creatorcontrib><creatorcontrib>Sivasupramaniam, Sakuntala</creatorcontrib><creatorcontrib>Moar, William J</creatorcontrib><title>Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.</description><subject>Animals</subject><subject>Bacillus</subject><subject>Bacillus thuringiensis</subject><subject>Bacillus thuringiensis - genetics</subject><subject>Bacillus thuringiensis - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - metabolism</subject><subject>Endotoxins - genetics</subject><subject>Endotoxins - metabolism</subject><subject>Gossypium - genetics</subject><subject>Gossypium - metabolism</subject><subject>Gossypium - parasitology</subject><subject>Helicoverpa zea</subject><subject>Hemolysin Proteins - genetics</subject><subject>Hemolysin Proteins - metabolism</subject><subject>Insecticide Resistance - genetics</subject><subject>Invertebrate Microbiology</subject><subject>Moths - genetics</subject><subject>Moths - growth &amp; development</subject><subject>Pest Control, Biological</subject><subject>Plants, Genetically Modified</subject><subject>Protein Binding</subject><subject>Zea</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctv1DAQxi0EokvhxhlyQlQiZfyI41yQdqNCkYpAQM_WrDPZNUrirZ20av_6hu6Kx8kaz2--eXyMveRwyrkw75dnX06Bay5yKB-xBYfK5IWU-jFbAFRVLoSCI_YspV8AoECbp-yIGxBKG75g6VsMzeRGH4YMhyartxjRjRT9HT58hjZbofNdN6Vs3E7RDxtPQ_Ipq-MtX7r8O83BiMOY1WEc54pV6LqbEPvsnDrvwjXFHWZ3hNnbVWgaTyfP2ZMWu0QvDu8xu_x49rM-zy--fvpcLy9yp7QYcywKo1RDlXMSTVm4kmS5lg03KFtFQpfz-kbppmgIRAWtKiqtoUItoF1TI4_Zh73ublr31Dgaxoid3UXfY7y1Ab39PzP4rd2EayuEkEKpWeDNQSCGq4nSaHufHHUdDhSmZAUUshTCzOC7PehiSClS-6cJB_vbJTu7ZB9cslDO-Kt_B_sLH2yZgWwPbP1me-MjWUy9Reptqayw83lm5PUeaTFY3ESf7OUPAVwCGFXospL3Zv6jTg</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Anilkumar, Konasale J</creator><creator>Rodrigo-Simón, Ana</creator><creator>Ferré, Juan</creator><creator>Pusztai-Carey, Marianne</creator><creator>Sivasupramaniam, Sakuntala</creator><creator>Moar, William J</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20080101</creationdate><title>Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)</title><author>Anilkumar, Konasale J ; Rodrigo-Simón, Ana ; Ferré, Juan ; Pusztai-Carey, Marianne ; Sivasupramaniam, Sakuntala ; Moar, William J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-a55844de9cc3a875c7e37b3d18a3f4e267128846d5de0290f4596609a620fbed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Bacillus</topic><topic>Bacillus thuringiensis</topic><topic>Bacillus thuringiensis - genetics</topic><topic>Bacillus thuringiensis - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - metabolism</topic><topic>Endotoxins - genetics</topic><topic>Endotoxins - metabolism</topic><topic>Gossypium - genetics</topic><topic>Gossypium - metabolism</topic><topic>Gossypium - parasitology</topic><topic>Helicoverpa zea</topic><topic>Hemolysin Proteins - genetics</topic><topic>Hemolysin Proteins - metabolism</topic><topic>Insecticide Resistance - genetics</topic><topic>Invertebrate Microbiology</topic><topic>Moths - genetics</topic><topic>Moths - growth &amp; development</topic><topic>Pest Control, Biological</topic><topic>Plants, Genetically Modified</topic><topic>Protein Binding</topic><topic>Zea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anilkumar, Konasale J</creatorcontrib><creatorcontrib>Rodrigo-Simón, Ana</creatorcontrib><creatorcontrib>Ferré, Juan</creatorcontrib><creatorcontrib>Pusztai-Carey, Marianne</creatorcontrib><creatorcontrib>Sivasupramaniam, Sakuntala</creatorcontrib><creatorcontrib>Moar, William J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anilkumar, Konasale J</au><au>Rodrigo-Simón, Ana</au><au>Ferré, Juan</au><au>Pusztai-Carey, Marianne</au><au>Sivasupramaniam, Sakuntala</au><au>Moar, William J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>74</volume><issue>2</issue><spage>462</spage><epage>469</epage><pages>462-469</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>18024681</pmid><doi>10.1128/AEM.01612-07</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2008-01, Vol.74 (2), p.462-469
issn 0099-2240
1098-5336
language eng
recordid cdi_highwire_asm_aem_74_2_462
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animals
Bacillus
Bacillus thuringiensis
Bacillus thuringiensis - genetics
Bacillus thuringiensis - metabolism
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Toxins - genetics
Bacterial Toxins - metabolism
Endotoxins - genetics
Endotoxins - metabolism
Gossypium - genetics
Gossypium - metabolism
Gossypium - parasitology
Helicoverpa zea
Hemolysin Proteins - genetics
Hemolysin Proteins - metabolism
Insecticide Resistance - genetics
Invertebrate Microbiology
Moths - genetics
Moths - growth & development
Pest Control, Biological
Plants, Genetically Modified
Protein Binding
Zea
title Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T12%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20and%20Characterization%20of%20Bacillus%20thuringiensis%20Cry1Ac-Resistant%20Cotton%20Bollworm%20Helicoverpa%20zea%20(Boddie)&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Anilkumar,%20Konasale%20J&rft.date=2008-01-01&rft.volume=74&rft.issue=2&rft.spage=462&rft.epage=469&rft.pages=462-469&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/AEM.01612-07&rft_dat=%3Cproquest_highw%3E20537228%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20537228&rft_id=info:pmid/18024681&rfr_iscdi=true