Transcriptomic and Proteomic Approach for Understanding the Molecular Basis of Adaptation of Saccharomyces cerevisiae to Wine Fermentation

Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the org...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2006, Vol.72 (1), p.836-847
Hauptverfasser: Zuzuarregui, Aurora, Monteoliva, Lucía, Gil, Concha, del Olmo, Marcel·lí
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 847
container_issue 1
container_start_page 836
container_title Applied and Environmental Microbiology
container_volume 72
creator Zuzuarregui, Aurora
Monteoliva, Lucía
Gil, Concha
del Olmo, Marcel·lí
description Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between two commercial strains with different fermentative behaviors. Our results indicate that some physiological differences between the fermentative behaviors of these two strains could be related to differences in the mRNA and protein profiles. In this sense, at the level of gene expression, we have found differences related to carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among other factors. In addition, we have detected a relative increase in the abundance of proteins involved in stress responses (the heat shock protein Hsp26p, for instance) and in fermentation (in particular, the major cytosolic aldehyde dehydrogenase Ald6p) in the strain with better behavior during vinification. Moreover, in the case of the other strain, higher levels of enzymes required for sulfur metabolism (Cys4p, Hom6p, and Met22p) are observed, which could be related to the production of particular organoleptic compounds or to detoxification processes.
doi_str_mv 10.1128/AEM.72.1.836-847.2006
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_highwire_asm_aem_72_1_836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>972367061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-8576349922d80f5b3e33ba72d984fbeb37d0cf51ea932085270ace8cb66cea423</originalsourceid><addsrcrecordid>eNqFks9u1DAQhyMEokvhEQALCW5Z_Cex4wvSUrWA1AqkdsXRmjiTjaskTu1sUV-Bp8bLrlrgwska-ZvfjK0vy14yumSMV-9XpxdLxZdsWQmZV4Vackrlo2zBqK7yUgj5OFtQqnXOeUGPsmcxXlNKCyqrp9kRk0KnlHKR_bwKMEYb3DT7wVkCY0O-BT_j72o1TcGD7UjrA1mPDYY4J8KNGzJ3SC58j3bbQyAfIbpIfEtWDUwzzM6Pu-oSrO0g-OHOYiQWA9666ADJ7Ml3NyI5wzDguG94nj1poY_44nAeZ-uz06uTz_n5109fTlbnuS0LOedVqaQotOa8qWhb1gKFqEHxRldFW2MtVENtWzIELTitSq4oWKxsLaVFKLg4zj7sc6dtPWBj0_wAvZmCGyDcGQ_O_H0zus5s_K1houScihTw7hAQ_M0W42wGFy32PYzot9FIJamUWv4XZKqQulIqgW_-Aa_9NozpFwynpZZc8N3Ycg_Z4GMM2N6vzKjZOWGSE0Zxw0xywiQnzM6J1Pfqz_c-dB0kSMDbAwDRQt8mI6yLD5wqCs2kThzZc53bdD9cQANxMIDD_dCEvN4jLXgDm5Bi1pecMkEZLSqqtPgFGyTWkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205962323</pqid></control><display><type>article</type><title>Transcriptomic and Proteomic Approach for Understanding the Molecular Basis of Adaptation of Saccharomyces cerevisiae to Wine Fermentation</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zuzuarregui, Aurora ; Monteoliva, Lucía ; Gil, Concha ; del Olmo, Marcel·lí</creator><creatorcontrib>Zuzuarregui, Aurora ; Monteoliva, Lucía ; Gil, Concha ; del Olmo, Marcel·lí</creatorcontrib><description>Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between two commercial strains with different fermentative behaviors. Our results indicate that some physiological differences between the fermentative behaviors of these two strains could be related to differences in the mRNA and protein profiles. In this sense, at the level of gene expression, we have found differences related to carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among other factors. In addition, we have detected a relative increase in the abundance of proteins involved in stress responses (the heat shock protein Hsp26p, for instance) and in fermentation (in particular, the major cytosolic aldehyde dehydrogenase Ald6p) in the strain with better behavior during vinification. Moreover, in the case of the other strain, higher levels of enzymes required for sulfur metabolism (Cys4p, Hom6p, and Met22p) are observed, which could be related to the production of particular organoleptic compounds or to detoxification processes.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.72.1.836-847.2006</identifier><identifier>PMID: 16391125</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>adaptation ; Adaptation, Physiological ; alcoholic fermentation ; Biological and medical sciences ; Biotechnology ; carbohydrate metabolism ; Fermentation ; Fermented food industries ; Food industries ; Fundamental and applied biological sciences. Psychology ; fungal proteins ; gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Heat-Shock Response ; messenger RNA ; microbial physiology ; Microbiology ; Physiology and Biotechnology ; protein composition ; Proteins ; Proteome ; proteomics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sulfur ; Transcription, Genetic ; transcriptome ; Wine - microbiology ; wine yeasts ; Wines ; Wines and vinegars ; Yeast</subject><ispartof>Applied and Environmental Microbiology, 2006, Vol.72 (1), p.836-847</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jan 2006</rights><rights>Copyright © 2006, American Society for Microbiology 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-8576349922d80f5b3e33ba72d984fbeb37d0cf51ea932085270ace8cb66cea423</citedby><cites>FETCH-LOGICAL-c546t-8576349922d80f5b3e33ba72d984fbeb37d0cf51ea932085270ace8cb66cea423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1352203/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1352203/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17449169$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16391125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuzuarregui, Aurora</creatorcontrib><creatorcontrib>Monteoliva, Lucía</creatorcontrib><creatorcontrib>Gil, Concha</creatorcontrib><creatorcontrib>del Olmo, Marcel·lí</creatorcontrib><title>Transcriptomic and Proteomic Approach for Understanding the Molecular Basis of Adaptation of Saccharomyces cerevisiae to Wine Fermentation</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between two commercial strains with different fermentative behaviors. Our results indicate that some physiological differences between the fermentative behaviors of these two strains could be related to differences in the mRNA and protein profiles. In this sense, at the level of gene expression, we have found differences related to carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among other factors. In addition, we have detected a relative increase in the abundance of proteins involved in stress responses (the heat shock protein Hsp26p, for instance) and in fermentation (in particular, the major cytosolic aldehyde dehydrogenase Ald6p) in the strain with better behavior during vinification. Moreover, in the case of the other strain, higher levels of enzymes required for sulfur metabolism (Cys4p, Hom6p, and Met22p) are observed, which could be related to the production of particular organoleptic compounds or to detoxification processes.</description><subject>adaptation</subject><subject>Adaptation, Physiological</subject><subject>alcoholic fermentation</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>carbohydrate metabolism</subject><subject>Fermentation</subject><subject>Fermented food industries</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungal proteins</subject><subject>gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Heat-Shock Response</subject><subject>messenger RNA</subject><subject>microbial physiology</subject><subject>Microbiology</subject><subject>Physiology and Biotechnology</subject><subject>protein composition</subject><subject>Proteins</subject><subject>Proteome</subject><subject>proteomics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sulfur</subject><subject>Transcription, Genetic</subject><subject>transcriptome</subject><subject>Wine - microbiology</subject><subject>wine yeasts</subject><subject>Wines</subject><subject>Wines and vinegars</subject><subject>Yeast</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9u1DAQhyMEokvhEQALCW5Z_Cex4wvSUrWA1AqkdsXRmjiTjaskTu1sUV-Bp8bLrlrgwska-ZvfjK0vy14yumSMV-9XpxdLxZdsWQmZV4Vackrlo2zBqK7yUgj5OFtQqnXOeUGPsmcxXlNKCyqrp9kRk0KnlHKR_bwKMEYb3DT7wVkCY0O-BT_j72o1TcGD7UjrA1mPDYY4J8KNGzJ3SC58j3bbQyAfIbpIfEtWDUwzzM6Pu-oSrO0g-OHOYiQWA9666ADJ7Ml3NyI5wzDguG94nj1poY_44nAeZ-uz06uTz_n5109fTlbnuS0LOedVqaQotOa8qWhb1gKFqEHxRldFW2MtVENtWzIELTitSq4oWKxsLaVFKLg4zj7sc6dtPWBj0_wAvZmCGyDcGQ_O_H0zus5s_K1houScihTw7hAQ_M0W42wGFy32PYzot9FIJamUWv4XZKqQulIqgW_-Aa_9NozpFwynpZZc8N3Ycg_Z4GMM2N6vzKjZOWGSE0Zxw0xywiQnzM6J1Pfqz_c-dB0kSMDbAwDRQt8mI6yLD5wqCs2kThzZc53bdD9cQANxMIDD_dCEvN4jLXgDm5Bi1pecMkEZLSqqtPgFGyTWkg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Zuzuarregui, Aurora</creator><creator>Monteoliva, Lucía</creator><creator>Gil, Concha</creator><creator>del Olmo, Marcel·lí</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2006</creationdate><title>Transcriptomic and Proteomic Approach for Understanding the Molecular Basis of Adaptation of Saccharomyces cerevisiae to Wine Fermentation</title><author>Zuzuarregui, Aurora ; Monteoliva, Lucía ; Gil, Concha ; del Olmo, Marcel·lí</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-8576349922d80f5b3e33ba72d984fbeb37d0cf51ea932085270ace8cb66cea423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>adaptation</topic><topic>Adaptation, Physiological</topic><topic>alcoholic fermentation</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>carbohydrate metabolism</topic><topic>Fermentation</topic><topic>Fermented food industries</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungal proteins</topic><topic>gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Heat-Shock Response</topic><topic>messenger RNA</topic><topic>microbial physiology</topic><topic>Microbiology</topic><topic>Physiology and Biotechnology</topic><topic>protein composition</topic><topic>Proteins</topic><topic>Proteome</topic><topic>proteomics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sulfur</topic><topic>Transcription, Genetic</topic><topic>transcriptome</topic><topic>Wine - microbiology</topic><topic>wine yeasts</topic><topic>Wines</topic><topic>Wines and vinegars</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuzuarregui, Aurora</creatorcontrib><creatorcontrib>Monteoliva, Lucía</creatorcontrib><creatorcontrib>Gil, Concha</creatorcontrib><creatorcontrib>del Olmo, Marcel·lí</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuzuarregui, Aurora</au><au>Monteoliva, Lucía</au><au>Gil, Concha</au><au>del Olmo, Marcel·lí</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomic and Proteomic Approach for Understanding the Molecular Basis of Adaptation of Saccharomyces cerevisiae to Wine Fermentation</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2006</date><risdate>2006</risdate><volume>72</volume><issue>1</issue><spage>836</spage><epage>847</epage><pages>836-847</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between two commercial strains with different fermentative behaviors. Our results indicate that some physiological differences between the fermentative behaviors of these two strains could be related to differences in the mRNA and protein profiles. In this sense, at the level of gene expression, we have found differences related to carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among other factors. In addition, we have detected a relative increase in the abundance of proteins involved in stress responses (the heat shock protein Hsp26p, for instance) and in fermentation (in particular, the major cytosolic aldehyde dehydrogenase Ald6p) in the strain with better behavior during vinification. Moreover, in the case of the other strain, higher levels of enzymes required for sulfur metabolism (Cys4p, Hom6p, and Met22p) are observed, which could be related to the production of particular organoleptic compounds or to detoxification processes.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>16391125</pmid><doi>10.1128/AEM.72.1.836-847.2006</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2006, Vol.72 (1), p.836-847
issn 0099-2240
1098-5336
language eng
recordid cdi_highwire_asm_aem_72_1_836
source MEDLINE; American Society for Microbiology Journals; PubMed Central; Alma/SFX Local Collection
subjects adaptation
Adaptation, Physiological
alcoholic fermentation
Biological and medical sciences
Biotechnology
carbohydrate metabolism
Fermentation
Fermented food industries
Food industries
Fundamental and applied biological sciences. Psychology
fungal proteins
gene expression
Gene Expression Profiling
Gene Expression Regulation, Fungal
Heat-Shock Response
messenger RNA
microbial physiology
Microbiology
Physiology and Biotechnology
protein composition
Proteins
Proteome
proteomics
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sulfur
Transcription, Genetic
transcriptome
Wine - microbiology
wine yeasts
Wines
Wines and vinegars
Yeast
title Transcriptomic and Proteomic Approach for Understanding the Molecular Basis of Adaptation of Saccharomyces cerevisiae to Wine Fermentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomic%20and%20Proteomic%20Approach%20for%20Understanding%20the%20Molecular%20Basis%20of%20Adaptation%20of%20Saccharomyces%20cerevisiae%20to%20Wine%20Fermentation&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Zuzuarregui,%20Aurora&rft.date=2006&rft.volume=72&rft.issue=1&rft.spage=836&rft.epage=847&rft.pages=836-847&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.72.1.836-847.2006&rft_dat=%3Cproquest_highw%3E972367061%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205962323&rft_id=info:pmid/16391125&rfr_iscdi=true