Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles

A series of air induction nozzles were tested in a high-speed wind tunnel. Droplet size spectra were measured for four air induction nozzles (IDK-120-01, IDK-120-02, IDK-120-03 and IDK-120-04) each at three spray pressures (0.3, 0.4 and 0.5 MPa) and seven different air velocities (121.7, 153.4, 185....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Agricultural Science and Engineering 2018-11, Vol.5 (4), p.442-454
Hauptverfasser: TANG, Qing, CHEN, Liping, ZHANG, Ruirui, XU, Min, XU, Gang, YI, Tongchuan, ZHANG, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue 4
container_start_page 442
container_title Frontiers of Agricultural Science and Engineering
container_volume 5
creator TANG, Qing
CHEN, Liping
ZHANG, Ruirui
XU, Min
XU, Gang
YI, Tongchuan
ZHANG, Bin
description A series of air induction nozzles were tested in a high-speed wind tunnel. Droplet size spectra were measured for four air induction nozzles (IDK-120-01, IDK-120-02, IDK-120-03 and IDK-120-04) each at three spray pressures (0.3, 0.4 and 0.5 MPa) and seven different air velocities (121.7, 153.4, 185.5, 218.4, 253.5, 277.5 and 305.5 km·h − 1). The measurement distance (0.15, 0.25 and 0.35 m) from the nozzle orifice was found to be important for the atomization of the droplets. The response surface method was used to analyze the experimental data. The results indicated that Dv 0.1 and Dv 0.5 of the droplets decreased quasi-linearly with increased wind speed, while Dv 0.9 was affected by the quadratic of wind speed. Dv 0.1, Dv 0.5 and Dv 0.9 of the droplets were all proportional to the orifice size, and were not markedly influenced by the spray pressure. The percentage of the spray volume consisting of droplets with a diameter below 100 mm (%
doi_str_mv 10.15302/J-FASE-2017169
format Article
fullrecord <record><control><sourceid>higheredpress_doaj_</sourceid><recordid>TN_cdi_higheredpress_frontiers_10_15302_J_FASE_2017169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_51157b01cf414c50bc4ede08df2ee2c6</doaj_id><sourcerecordid>10.15302/J-FASE-2017169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-655dba936fe3b471bd410e66e1544b0d9557a133ef1f692a2574586bf3b1b21b3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEhV0ZvUfCLXj2G7GqrTQqoIBkNgsP67bVCGO7BREfz3pQ2ws93HuPd9wELqj5J5yRvLRMptPXmdZTqikorxAg5yUPCul_Lg8z5ITfo2GKW0J6b_6QsYD9PwQQ1tDh1MLtosa68bhTbXeZL0ADn9X_d7tmgZqDF-63umuCg0OHusq4v64s0ehCft9DekWXXldJxie-w16n8_epk_Z6uVxMZ2sMstK3mWCc2d0yYQHZgpJjSsoASGA8qIwxJWcS00ZA0-9KHOdc1nwsTCeGWpyatgNWpy4LuitamP1qeOPCrpSRyHEtdKxq2wNilPKpSHU-oIWlhNjC3BAxs7nALkVPWt0YtkYUorg_3iUqGO6aqkO6apzur1DnByHoCCCayOkpHwMTVdBTP8afwGNaH8I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>TANG, Qing ; CHEN, Liping ; ZHANG, Ruirui ; XU, Min ; XU, Gang ; YI, Tongchuan ; ZHANG, Bin</creator><creatorcontrib>TANG, Qing ; CHEN, Liping ; ZHANG, Ruirui ; XU, Min ; XU, Gang ; YI, Tongchuan ; ZHANG, Bin</creatorcontrib><description>A series of air induction nozzles were tested in a high-speed wind tunnel. Droplet size spectra were measured for four air induction nozzles (IDK-120-01, IDK-120-02, IDK-120-03 and IDK-120-04) each at three spray pressures (0.3, 0.4 and 0.5 MPa) and seven different air velocities (121.7, 153.4, 185.5, 218.4, 253.5, 277.5 and 305.5 km·h − 1). The measurement distance (0.15, 0.25 and 0.35 m) from the nozzle orifice was found to be important for the atomization of the droplets. The response surface method was used to analyze the experimental data. The results indicated that Dv 0.1 and Dv 0.5 of the droplets decreased quasi-linearly with increased wind speed, while Dv 0.9 was affected by the quadratic of wind speed. Dv 0.1, Dv 0.5 and Dv 0.9 of the droplets were all proportional to the orifice size, and were not markedly influenced by the spray pressure. The percentage of the spray volume consisting of droplets with a diameter below 100 mm (%&lt;100 mm) was found to be quadratically related to wind speed, and was not markedly influenced by the spray pressure and orifice size. However, the effect of the orifice size on the %&lt; 200 mm could not be ignored.</description><identifier>ISSN: 2095-7505</identifier><identifier>EISSN: 2095-977X</identifier><identifier>DOI: 10.15302/J-FASE-2017169</identifier><language>eng</language><publisher>Higher Education Press</publisher><subject>aerial spray ; air induction nozzle ; air induction nozzle|wind tunnel|aerial spray|droplet size spectra ; droplet size spectra ; wind tunnel</subject><ispartof>Frontiers of Agricultural Science and Engineering, 2018-11, Vol.5 (4), p.442-454</ispartof><rights>Copyright reserved, 2017, The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-655dba936fe3b471bd410e66e1544b0d9557a133ef1f692a2574586bf3b1b21b3</citedby><cites>FETCH-LOGICAL-c395t-655dba936fe3b471bd410e66e1544b0d9557a133ef1f692a2574586bf3b1b21b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>TANG, Qing</creatorcontrib><creatorcontrib>CHEN, Liping</creatorcontrib><creatorcontrib>ZHANG, Ruirui</creatorcontrib><creatorcontrib>XU, Min</creatorcontrib><creatorcontrib>XU, Gang</creatorcontrib><creatorcontrib>YI, Tongchuan</creatorcontrib><creatorcontrib>ZHANG, Bin</creatorcontrib><title>Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles</title><title>Frontiers of Agricultural Science and Engineering</title><addtitle>Front. Agr. Sci. Eng</addtitle><description>A series of air induction nozzles were tested in a high-speed wind tunnel. Droplet size spectra were measured for four air induction nozzles (IDK-120-01, IDK-120-02, IDK-120-03 and IDK-120-04) each at three spray pressures (0.3, 0.4 and 0.5 MPa) and seven different air velocities (121.7, 153.4, 185.5, 218.4, 253.5, 277.5 and 305.5 km·h − 1). The measurement distance (0.15, 0.25 and 0.35 m) from the nozzle orifice was found to be important for the atomization of the droplets. The response surface method was used to analyze the experimental data. The results indicated that Dv 0.1 and Dv 0.5 of the droplets decreased quasi-linearly with increased wind speed, while Dv 0.9 was affected by the quadratic of wind speed. Dv 0.1, Dv 0.5 and Dv 0.9 of the droplets were all proportional to the orifice size, and were not markedly influenced by the spray pressure. The percentage of the spray volume consisting of droplets with a diameter below 100 mm (%&lt;100 mm) was found to be quadratically related to wind speed, and was not markedly influenced by the spray pressure and orifice size. However, the effect of the orifice size on the %&lt; 200 mm could not be ignored.</description><subject>aerial spray</subject><subject>air induction nozzle</subject><subject>air induction nozzle|wind tunnel|aerial spray|droplet size spectra</subject><subject>droplet size spectra</subject><subject>wind tunnel</subject><issn>2095-7505</issn><issn>2095-977X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kDtPwzAUhS0EEhV0ZvUfCLXj2G7GqrTQqoIBkNgsP67bVCGO7BREfz3pQ2ws93HuPd9wELqj5J5yRvLRMptPXmdZTqikorxAg5yUPCul_Lg8z5ITfo2GKW0J6b_6QsYD9PwQQ1tDh1MLtosa68bhTbXeZL0ADn9X_d7tmgZqDF-63umuCg0OHusq4v64s0ehCft9DekWXXldJxie-w16n8_epk_Z6uVxMZ2sMstK3mWCc2d0yYQHZgpJjSsoASGA8qIwxJWcS00ZA0-9KHOdc1nwsTCeGWpyatgNWpy4LuitamP1qeOPCrpSRyHEtdKxq2wNilPKpSHU-oIWlhNjC3BAxs7nALkVPWt0YtkYUorg_3iUqGO6aqkO6apzur1DnByHoCCCayOkpHwMTVdBTP8afwGNaH8I</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>TANG, Qing</creator><creator>CHEN, Liping</creator><creator>ZHANG, Ruirui</creator><creator>XU, Min</creator><creator>XU, Gang</creator><creator>YI, Tongchuan</creator><creator>ZHANG, Bin</creator><general>Higher Education Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20181101</creationdate><title>Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles</title><author>TANG, Qing ; CHEN, Liping ; ZHANG, Ruirui ; XU, Min ; XU, Gang ; YI, Tongchuan ; ZHANG, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-655dba936fe3b471bd410e66e1544b0d9557a133ef1f692a2574586bf3b1b21b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aerial spray</topic><topic>air induction nozzle</topic><topic>air induction nozzle|wind tunnel|aerial spray|droplet size spectra</topic><topic>droplet size spectra</topic><topic>wind tunnel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TANG, Qing</creatorcontrib><creatorcontrib>CHEN, Liping</creatorcontrib><creatorcontrib>ZHANG, Ruirui</creatorcontrib><creatorcontrib>XU, Min</creatorcontrib><creatorcontrib>XU, Gang</creatorcontrib><creatorcontrib>YI, Tongchuan</creatorcontrib><creatorcontrib>ZHANG, Bin</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers of Agricultural Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TANG, Qing</au><au>CHEN, Liping</au><au>ZHANG, Ruirui</au><au>XU, Min</au><au>XU, Gang</au><au>YI, Tongchuan</au><au>ZHANG, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles</atitle><jtitle>Frontiers of Agricultural Science and Engineering</jtitle><stitle>Front. Agr. Sci. Eng</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>5</volume><issue>4</issue><spage>442</spage><epage>454</epage><pages>442-454</pages><issn>2095-7505</issn><eissn>2095-977X</eissn><abstract>A series of air induction nozzles were tested in a high-speed wind tunnel. Droplet size spectra were measured for four air induction nozzles (IDK-120-01, IDK-120-02, IDK-120-03 and IDK-120-04) each at three spray pressures (0.3, 0.4 and 0.5 MPa) and seven different air velocities (121.7, 153.4, 185.5, 218.4, 253.5, 277.5 and 305.5 km·h − 1). The measurement distance (0.15, 0.25 and 0.35 m) from the nozzle orifice was found to be important for the atomization of the droplets. The response surface method was used to analyze the experimental data. The results indicated that Dv 0.1 and Dv 0.5 of the droplets decreased quasi-linearly with increased wind speed, while Dv 0.9 was affected by the quadratic of wind speed. Dv 0.1, Dv 0.5 and Dv 0.9 of the droplets were all proportional to the orifice size, and were not markedly influenced by the spray pressure. The percentage of the spray volume consisting of droplets with a diameter below 100 mm (%&lt;100 mm) was found to be quadratically related to wind speed, and was not markedly influenced by the spray pressure and orifice size. However, the effect of the orifice size on the %&lt; 200 mm could not be ignored.</abstract><pub>Higher Education Press</pub><doi>10.15302/J-FASE-2017169</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-7505
ispartof Frontiers of Agricultural Science and Engineering, 2018-11, Vol.5 (4), p.442-454
issn 2095-7505
2095-977X
language eng
recordid cdi_higheredpress_frontiers_10_15302_J_FASE_2017169
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects aerial spray
air induction nozzle
air induction nozzle|wind tunnel|aerial spray|droplet size spectra
droplet size spectra
wind tunnel
title Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-higheredpress_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Droplet%20spectra%20and%20high-speed%20wind%20tunnel%20evaluation%20of%20air%20induction%20nozzles&rft.jtitle=Frontiers%20of%20Agricultural%20Science%20and%20Engineering&rft.au=TANG,%20Qing&rft.date=2018-11-01&rft.volume=5&rft.issue=4&rft.spage=442&rft.epage=454&rft.pages=442-454&rft.issn=2095-7505&rft.eissn=2095-977X&rft_id=info:doi/10.15302/J-FASE-2017169&rft_dat=%3Chigheredpress_doaj_%3E10.15302/J-FASE-2017169%3C/higheredpress_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_51157b01cf414c50bc4ede08df2ee2c6&rfr_iscdi=true