From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser

Femtosecond laser-induced volume nanograting formation is numerically investigated. The developed model solves nonlinear Maxwell's equations coupled with multiple rate free carrier density equations in the presence of randomly distributed inhomogeneities in fused silica. As a result of the perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-02, Vol.93 (7), Article 075427
Hauptverfasser: Rudenko, Anton, Colombier, Jean-Philippe, Itina, Tatiana E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physical review. B
container_volume 93
creator Rudenko, Anton
Colombier, Jean-Philippe
Itina, Tatiana E.
description Femtosecond laser-induced volume nanograting formation is numerically investigated. The developed model solves nonlinear Maxwell's equations coupled with multiple rate free carrier density equations in the presence of randomly distributed inhomogeneities in fused silica. As a result of the performed calculations, conduction band electron density is shown to form nanoplanes elongated perpendicular to the laser polarization. Two types of nanoplanes are identified. The structures of the first type have a characteristic period of the laser wavelength in glass and are attributed to the interference of the incident and the inhomogeneity-scattered light waves. Field components induced by coherent multiple scattering in directions perpendicular to the laser polarization are shown to be responsible for the formation of the second type of structures with a subwavelength periodicity. In this case, the influence of the inhomogeneity concentration on the period of nanoplanes is shown. The calculation results not only help to identify the physical origin of the self-organized nanogratings, but also explain their period and orientation.
doi_str_mv 10.1103/PhysRevB.93.075427
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ujm_01340985v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808085841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-f44053552cbb2050607f677e1e5f88511566ee9f49259bee4f81e91354267f4b3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhosoOOZewKtc6sXmSZO0zeUczgkDRfQ6pOmpzWybmbSDvb0d1XEuvgPn44fzR9EthQWlwB7eqmN4x8PjQrIFpILH6UU0iXki51Im8vK8C7iOZiHsAIAmIFOQk0ivvWuI120xwLaVa9wXtmg7i4F0juzRW1dYQ1rdutD53nS9H062LXqDxUCS9_U3Cba2RpP8SPq68zpUznek1gH9TXRV6jrg7I_T6HP99LHazLevzy-r5XZuOKTdvOQcBBMiNnkeg4AE0jJJU6QoyiwTlIokQZQll7GQOSIvM4qSsuHdJC15zqbR_Zhb6VrtvW20Pyqnrdost6rfNQoo4yAzcaCDeze6e-9-egydamwwWNe6RdcHRTMYRmT8pMajarwLwWN5zqagTvWr__qVZGqsn_0C-V56NQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808085841</pqid></control><display><type>article</type><title>From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser</title><source>American Physical Society Journals</source><creator>Rudenko, Anton ; Colombier, Jean-Philippe ; Itina, Tatiana E.</creator><creatorcontrib>Rudenko, Anton ; Colombier, Jean-Philippe ; Itina, Tatiana E.</creatorcontrib><description>Femtosecond laser-induced volume nanograting formation is numerically investigated. The developed model solves nonlinear Maxwell's equations coupled with multiple rate free carrier density equations in the presence of randomly distributed inhomogeneities in fused silica. As a result of the performed calculations, conduction band electron density is shown to form nanoplanes elongated perpendicular to the laser polarization. Two types of nanoplanes are identified. The structures of the first type have a characteristic period of the laser wavelength in glass and are attributed to the interference of the incident and the inhomogeneity-scattered light waves. Field components induced by coherent multiple scattering in directions perpendicular to the laser polarization are shown to be responsible for the formation of the second type of structures with a subwavelength periodicity. In this case, the influence of the inhomogeneity concentration on the period of nanoplanes is shown. The calculation results not only help to identify the physical origin of the self-organized nanogratings, but also explain their period and orientation.</description><identifier>ISSN: 2469-9950</identifier><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 2469-9969</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.93.075427</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed matter ; Engineering Sciences ; Formations ; Inhomogeneities ; Lasers ; Mathematical models ; Maxwell's equations ; Nanostructure ; Optics ; Photonic ; Polarization</subject><ispartof>Physical review. B, 2016-02, Vol.93 (7), Article 075427</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-f44053552cbb2050607f677e1e5f88511566ee9f49259bee4f81e91354267f4b3</citedby><cites>FETCH-LOGICAL-c407t-f44053552cbb2050607f677e1e5f88511566ee9f49259bee4f81e91354267f4b3</cites><orcidid>0000-0002-8915-8319 ; 0000-0001-7117-8699 ; 0000-0001-8462-7019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://ujm.hal.science/ujm-01340985$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rudenko, Anton</creatorcontrib><creatorcontrib>Colombier, Jean-Philippe</creatorcontrib><creatorcontrib>Itina, Tatiana E.</creatorcontrib><title>From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser</title><title>Physical review. B</title><description>Femtosecond laser-induced volume nanograting formation is numerically investigated. The developed model solves nonlinear Maxwell's equations coupled with multiple rate free carrier density equations in the presence of randomly distributed inhomogeneities in fused silica. As a result of the performed calculations, conduction band electron density is shown to form nanoplanes elongated perpendicular to the laser polarization. Two types of nanoplanes are identified. The structures of the first type have a characteristic period of the laser wavelength in glass and are attributed to the interference of the incident and the inhomogeneity-scattered light waves. Field components induced by coherent multiple scattering in directions perpendicular to the laser polarization are shown to be responsible for the formation of the second type of structures with a subwavelength periodicity. In this case, the influence of the inhomogeneity concentration on the period of nanoplanes is shown. The calculation results not only help to identify the physical origin of the self-organized nanogratings, but also explain their period and orientation.</description><subject>Condensed matter</subject><subject>Engineering Sciences</subject><subject>Formations</subject><subject>Inhomogeneities</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Maxwell's equations</subject><subject>Nanostructure</subject><subject>Optics</subject><subject>Photonic</subject><subject>Polarization</subject><issn>2469-9950</issn><issn>1098-0121</issn><issn>2469-9969</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhosoOOZewKtc6sXmSZO0zeUczgkDRfQ6pOmpzWybmbSDvb0d1XEuvgPn44fzR9EthQWlwB7eqmN4x8PjQrIFpILH6UU0iXki51Im8vK8C7iOZiHsAIAmIFOQk0ivvWuI120xwLaVa9wXtmg7i4F0juzRW1dYQ1rdutD53nS9H062LXqDxUCS9_U3Cba2RpP8SPq68zpUznek1gH9TXRV6jrg7I_T6HP99LHazLevzy-r5XZuOKTdvOQcBBMiNnkeg4AE0jJJU6QoyiwTlIokQZQll7GQOSIvM4qSsuHdJC15zqbR_Zhb6VrtvW20Pyqnrdost6rfNQoo4yAzcaCDeze6e-9-egydamwwWNe6RdcHRTMYRmT8pMajarwLwWN5zqagTvWr__qVZGqsn_0C-V56NQ</recordid><startdate>20160217</startdate><enddate>20160217</enddate><creator>Rudenko, Anton</creator><creator>Colombier, Jean-Philippe</creator><creator>Itina, Tatiana E.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8915-8319</orcidid><orcidid>https://orcid.org/0000-0001-7117-8699</orcidid><orcidid>https://orcid.org/0000-0001-8462-7019</orcidid></search><sort><creationdate>20160217</creationdate><title>From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser</title><author>Rudenko, Anton ; Colombier, Jean-Philippe ; Itina, Tatiana E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-f44053552cbb2050607f677e1e5f88511566ee9f49259bee4f81e91354267f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed matter</topic><topic>Engineering Sciences</topic><topic>Formations</topic><topic>Inhomogeneities</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Maxwell's equations</topic><topic>Nanostructure</topic><topic>Optics</topic><topic>Photonic</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudenko, Anton</creatorcontrib><creatorcontrib>Colombier, Jean-Philippe</creatorcontrib><creatorcontrib>Itina, Tatiana E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudenko, Anton</au><au>Colombier, Jean-Philippe</au><au>Itina, Tatiana E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser</atitle><jtitle>Physical review. B</jtitle><date>2016-02-17</date><risdate>2016</risdate><volume>93</volume><issue>7</issue><artnum>075427</artnum><issn>2469-9950</issn><issn>1098-0121</issn><eissn>2469-9969</eissn><eissn>1550-235X</eissn><abstract>Femtosecond laser-induced volume nanograting formation is numerically investigated. The developed model solves nonlinear Maxwell's equations coupled with multiple rate free carrier density equations in the presence of randomly distributed inhomogeneities in fused silica. As a result of the performed calculations, conduction band electron density is shown to form nanoplanes elongated perpendicular to the laser polarization. Two types of nanoplanes are identified. The structures of the first type have a characteristic period of the laser wavelength in glass and are attributed to the interference of the incident and the inhomogeneity-scattered light waves. Field components induced by coherent multiple scattering in directions perpendicular to the laser polarization are shown to be responsible for the formation of the second type of structures with a subwavelength periodicity. In this case, the influence of the inhomogeneity concentration on the period of nanoplanes is shown. The calculation results not only help to identify the physical origin of the self-organized nanogratings, but also explain their period and orientation.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevB.93.075427</doi><orcidid>https://orcid.org/0000-0002-8915-8319</orcidid><orcidid>https://orcid.org/0000-0001-7117-8699</orcidid><orcidid>https://orcid.org/0000-0001-8462-7019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-02, Vol.93 (7), Article 075427
issn 2469-9950
1098-0121
2469-9969
1550-235X
language eng
recordid cdi_hal_primary_oai_HAL_ujm_01340985v1
source American Physical Society Journals
subjects Condensed matter
Engineering Sciences
Formations
Inhomogeneities
Lasers
Mathematical models
Maxwell's equations
Nanostructure
Optics
Photonic
Polarization
title From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20random%20inhomogeneities%20to%20periodic%20nanostructures%20induced%20in%20bulk%20silica%20by%20ultrashort%20laser&rft.jtitle=Physical%20review.%20B&rft.au=Rudenko,%20Anton&rft.date=2016-02-17&rft.volume=93&rft.issue=7&rft.artnum=075427&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.075427&rft_dat=%3Cproquest_hal_p%3E1808085841%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808085841&rft_id=info:pmid/&rfr_iscdi=true