Recognition of diffraction-grating profile using a neural network classifier in optical scatterometry

Optical scatterometry has been given much credit during the past few years in the semiconductor industry. The geometry of an optical diffracted structure is deduced from the scattered intensity by solving an inverse problem. This step always requires a previously defined geometrical model. We develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2008-07, Vol.25 (7), p.1661-1667
Hauptverfasser: GEREIGE, Issam, ROBERT, Stéphane, THIRIA, Sylvie, BADRAN, Fouad, GRANET, Gérard, ROUSSEAU, Jean Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical scatterometry has been given much credit during the past few years in the semiconductor industry. The geometry of an optical diffracted structure is deduced from the scattered intensity by solving an inverse problem. This step always requires a previously defined geometrical model. We develop an artificial neural network classifier whose purpose is to identify the structural geometry of a diffraction grating from its measured ellipsometric signature. This will take place before the characterization stage. Two types of geometry will be treated: sinusoidal and symmetric trapezoidal. Experimental results are performed on two manufactured samples: a sinusoidal photoresist grating deposited on a glass substrate and a trapezoidal grating etched on a SiO2 substrate with periods of 2 microm and 0.565 microm, respectively.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.25.001661