Truncated Hilbert transform and image reconstruction from limited tomographic data
A data sufficiency condition for 2D or 3D region-of-interest (ROI) reconstruction from a limited family of line integrals has recently been introduced using the relation between the backprojection of a derivative of the data and the Hilbert transform of the image along certain segments of lines cove...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2006-06, Vol.22 (3), p.1037-1053 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A data sufficiency condition for 2D or 3D region-of-interest (ROI) reconstruction from a limited family of line integrals has recently been introduced using the relation between the backprojection of a derivative of the data and the Hilbert transform of the image along certain segments of lines covering the ROI. This paper generalizes this sufficiency condition by showing that unique and stable reconstruction can be achieved from an even more restricted family of data sets, or, conversely, that even larger ROIs can be reconstructed from a given data set. The condition is derived by analysing the inversion of the truncated Hilbert transform, here defined as the problem of recovering a function of one real variable from the knowledge of its Hilbert transform along a segment which only partially covers the support of the function but has at least one end point outside that support. A proof of uniqueness and a stability estimate are given for this problem. Numerical simulations of a 2D thorax phantom are presented to illustrate the new data sufficiency condition and the good stability of the ROI reconstruction in the presence of noise. |
---|---|
ISSN: | 0266-5611 1361-6420 |
DOI: | 10.1088/0266-5611/22/3/019 |