Role of the major determinant of polar flagellation FlhG in the endoflagella‐containing spirochete Leptospira

Spirochetes can be distinguished from other bacteria by their spiral‐shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2021-11, Vol.116 (5), p.1392-1406
Hauptverfasser: Fule, Lenka, Halifa, Ruben, Fontana, Celia, Sismeiro, Odile, Legendre, Rachel, Varet, Hugo, Coppée, Jean‐Yves, Murray, Gerald L., Adler, Ben, Hendrixson, David R., Buschiazzo, Alejandro, Guo, Shuaiqi, Liu, Jun, Picardeau, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1406
container_issue 5
container_start_page 1392
container_title Molecular microbiology
container_volume 116
creator Fule, Lenka
Halifa, Ruben
Fontana, Celia
Sismeiro, Odile
Legendre, Rachel
Varet, Hugo
Coppée, Jean‐Yves
Murray, Gerald L.
Adler, Ben
Hendrixson, David R.
Buschiazzo, Alejandro
Guo, Shuaiqi
Liu, Jun
Picardeau, Mathieu
description Spirochetes can be distinguished from other bacteria by their spiral‐shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG− mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild‐type strains in gel‐like environments but not hyperflagellated as reported previously in other bacteria. Cryo‐electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG− mutant in comparison to wild‐type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG− and wild‐type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG− mutant was attenuated for virulence in the hamster model. Cross‐species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes. Spirochetes are helical or flat wave‐shaped cells that possess a cellular ultrastructure unique to bacteria: internal organelles of motility, called periplasmic flagella, that are attached at each cell end. Here we describe the role of FlhG in the biogenesis and localization of periplasmic flagella in Leptospira spp.
doi_str_mv 10.1111/mmi.14831
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_03411258v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583318076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4261-490adc42239a3deab6be3c0e9a86289497d4a241a8bd5d1d5b10c4113b16fa023</originalsourceid><addsrcrecordid>eNp1kc9q3DAQh0VpabZJD32BIuilPTiRLNmWjiHkH2wolBZyE2NLzmqRJVeyE3LrI-QZ8yTVxkkOheoiifnmY4YfQp8oOaT5HA2DPaRcMPoGrSirq6KUlXiLVkRWpGCivN5DH1LaEkIZqdl7tMd4XTWMiRUKP4IzOPR42hg8wDZErM1k4mA9-GlXGIODiHsHN8Y5mGzw-MxtzrH1Tz3G6_BSfPzz0AU_gfXW3-A02hi6TbbhtRmnsPvDAXrXg0vm4_O9j36dnf48uSjW388vT47XRcfLmhZcEtD5WTIJTBto69awjhgJoi6F5LLRHEpOQbS60lRXLSUdp5S1tO6BlGwfFYt3A06N0Q4Q71UAqy6O12qENJk5KsJyS1mJW5r5rws_xvB7NmlSg03dbilvwpxUphijgjR1Rr_8g27DHH3eJlOykYyzRmTq20J1MaQUTf86BSVql5rKqamn1DL7-dk4t4PRr-RLTBk4WoA768z9_03q6upyUf4F_4CiGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597934378</pqid></control><display><type>article</type><title>Role of the major determinant of polar flagellation FlhG in the endoflagella‐containing spirochete Leptospira</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fule, Lenka ; Halifa, Ruben ; Fontana, Celia ; Sismeiro, Odile ; Legendre, Rachel ; Varet, Hugo ; Coppée, Jean‐Yves ; Murray, Gerald L. ; Adler, Ben ; Hendrixson, David R. ; Buschiazzo, Alejandro ; Guo, Shuaiqi ; Liu, Jun ; Picardeau, Mathieu</creator><creatorcontrib>Fule, Lenka ; Halifa, Ruben ; Fontana, Celia ; Sismeiro, Odile ; Legendre, Rachel ; Varet, Hugo ; Coppée, Jean‐Yves ; Murray, Gerald L. ; Adler, Ben ; Hendrixson, David R. ; Buschiazzo, Alejandro ; Guo, Shuaiqi ; Liu, Jun ; Picardeau, Mathieu</creatorcontrib><description>Spirochetes can be distinguished from other bacteria by their spiral‐shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG− mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild‐type strains in gel‐like environments but not hyperflagellated as reported previously in other bacteria. Cryo‐electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG− mutant in comparison to wild‐type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG− and wild‐type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG− mutant was attenuated for virulence in the hamster model. Cross‐species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes. Spirochetes are helical or flat wave‐shaped cells that possess a cellular ultrastructure unique to bacteria: internal organelles of motility, called periplasmic flagella, that are attached at each cell end. Here we describe the role of FlhG in the biogenesis and localization of periplasmic flagella in Leptospira spp.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14831</identifier><identifier>PMID: 34657338</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Complementation ; Cryoelectron Microscopy ; endoflagellum ; Flagella ; Flagella - genetics ; Flagella - metabolism ; FlhG ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Genetic Complementation Test ; Humans ; Leptospira ; Leptospira - cytology ; Leptospira - genetics ; Leptospira - metabolism ; Leptospirosis - microbiology ; Life Sciences ; Monomeric GTP-Binding Proteins - genetics ; Monomeric GTP-Binding Proteins - metabolism ; Morphology ; motility ; Mutants ; Mutation ; Species ; Spirochaetales - genetics ; Spirochaetales - metabolism ; Spirochetes ; Strains (organisms) ; Transcription ; Transcriptomes ; Virulence</subject><ispartof>Molecular microbiology, 2021-11, Vol.116 (5), p.1392-1406</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4261-490adc42239a3deab6be3c0e9a86289497d4a241a8bd5d1d5b10c4113b16fa023</citedby><cites>FETCH-LOGICAL-c4261-490adc42239a3deab6be3c0e9a86289497d4a241a8bd5d1d5b10c4113b16fa023</cites><orcidid>0000-0002-5338-5579 ; 0000-0003-4113-4606 ; 0000-0002-5196-9431 ; 0000-0003-3980-4463 ; 0000-0002-2509-6526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.14831$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.14831$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34657338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-03411258$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fule, Lenka</creatorcontrib><creatorcontrib>Halifa, Ruben</creatorcontrib><creatorcontrib>Fontana, Celia</creatorcontrib><creatorcontrib>Sismeiro, Odile</creatorcontrib><creatorcontrib>Legendre, Rachel</creatorcontrib><creatorcontrib>Varet, Hugo</creatorcontrib><creatorcontrib>Coppée, Jean‐Yves</creatorcontrib><creatorcontrib>Murray, Gerald L.</creatorcontrib><creatorcontrib>Adler, Ben</creatorcontrib><creatorcontrib>Hendrixson, David R.</creatorcontrib><creatorcontrib>Buschiazzo, Alejandro</creatorcontrib><creatorcontrib>Guo, Shuaiqi</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Picardeau, Mathieu</creatorcontrib><title>Role of the major determinant of polar flagellation FlhG in the endoflagella‐containing spirochete Leptospira</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Spirochetes can be distinguished from other bacteria by their spiral‐shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG− mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild‐type strains in gel‐like environments but not hyperflagellated as reported previously in other bacteria. Cryo‐electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG− mutant in comparison to wild‐type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG− and wild‐type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG− mutant was attenuated for virulence in the hamster model. Cross‐species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes. Spirochetes are helical or flat wave‐shaped cells that possess a cellular ultrastructure unique to bacteria: internal organelles of motility, called periplasmic flagella, that are attached at each cell end. Here we describe the role of FlhG in the biogenesis and localization of periplasmic flagella in Leptospira spp.</description><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Complementation</subject><subject>Cryoelectron Microscopy</subject><subject>endoflagellum</subject><subject>Flagella</subject><subject>Flagella - genetics</subject><subject>Flagella - metabolism</subject><subject>FlhG</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetic Complementation Test</subject><subject>Humans</subject><subject>Leptospira</subject><subject>Leptospira - cytology</subject><subject>Leptospira - genetics</subject><subject>Leptospira - metabolism</subject><subject>Leptospirosis - microbiology</subject><subject>Life Sciences</subject><subject>Monomeric GTP-Binding Proteins - genetics</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Morphology</subject><subject>motility</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Species</subject><subject>Spirochaetales - genetics</subject><subject>Spirochaetales - metabolism</subject><subject>Spirochetes</subject><subject>Strains (organisms)</subject><subject>Transcription</subject><subject>Transcriptomes</subject><subject>Virulence</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9q3DAQh0VpabZJD32BIuilPTiRLNmWjiHkH2wolBZyE2NLzmqRJVeyE3LrI-QZ8yTVxkkOheoiifnmY4YfQp8oOaT5HA2DPaRcMPoGrSirq6KUlXiLVkRWpGCivN5DH1LaEkIZqdl7tMd4XTWMiRUKP4IzOPR42hg8wDZErM1k4mA9-GlXGIODiHsHN8Y5mGzw-MxtzrH1Tz3G6_BSfPzz0AU_gfXW3-A02hi6TbbhtRmnsPvDAXrXg0vm4_O9j36dnf48uSjW388vT47XRcfLmhZcEtD5WTIJTBto69awjhgJoi6F5LLRHEpOQbS60lRXLSUdp5S1tO6BlGwfFYt3A06N0Q4Q71UAqy6O12qENJk5KsJyS1mJW5r5rws_xvB7NmlSg03dbilvwpxUphijgjR1Rr_8g27DHH3eJlOykYyzRmTq20J1MaQUTf86BSVql5rKqamn1DL7-dk4t4PRr-RLTBk4WoA768z9_03q6upyUf4F_4CiGg</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Fule, Lenka</creator><creator>Halifa, Ruben</creator><creator>Fontana, Celia</creator><creator>Sismeiro, Odile</creator><creator>Legendre, Rachel</creator><creator>Varet, Hugo</creator><creator>Coppée, Jean‐Yves</creator><creator>Murray, Gerald L.</creator><creator>Adler, Ben</creator><creator>Hendrixson, David R.</creator><creator>Buschiazzo, Alejandro</creator><creator>Guo, Shuaiqi</creator><creator>Liu, Jun</creator><creator>Picardeau, Mathieu</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5338-5579</orcidid><orcidid>https://orcid.org/0000-0003-4113-4606</orcidid><orcidid>https://orcid.org/0000-0002-5196-9431</orcidid><orcidid>https://orcid.org/0000-0003-3980-4463</orcidid><orcidid>https://orcid.org/0000-0002-2509-6526</orcidid></search><sort><creationdate>202111</creationdate><title>Role of the major determinant of polar flagellation FlhG in the endoflagella‐containing spirochete Leptospira</title><author>Fule, Lenka ; Halifa, Ruben ; Fontana, Celia ; Sismeiro, Odile ; Legendre, Rachel ; Varet, Hugo ; Coppée, Jean‐Yves ; Murray, Gerald L. ; Adler, Ben ; Hendrixson, David R. ; Buschiazzo, Alejandro ; Guo, Shuaiqi ; Liu, Jun ; Picardeau, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4261-490adc42239a3deab6be3c0e9a86289497d4a241a8bd5d1d5b10c4113b16fa023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Complementation</topic><topic>Cryoelectron Microscopy</topic><topic>endoflagellum</topic><topic>Flagella</topic><topic>Flagella - genetics</topic><topic>Flagella - metabolism</topic><topic>FlhG</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetic Complementation Test</topic><topic>Humans</topic><topic>Leptospira</topic><topic>Leptospira - cytology</topic><topic>Leptospira - genetics</topic><topic>Leptospira - metabolism</topic><topic>Leptospirosis - microbiology</topic><topic>Life Sciences</topic><topic>Monomeric GTP-Binding Proteins - genetics</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Morphology</topic><topic>motility</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Species</topic><topic>Spirochaetales - genetics</topic><topic>Spirochaetales - metabolism</topic><topic>Spirochetes</topic><topic>Strains (organisms)</topic><topic>Transcription</topic><topic>Transcriptomes</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fule, Lenka</creatorcontrib><creatorcontrib>Halifa, Ruben</creatorcontrib><creatorcontrib>Fontana, Celia</creatorcontrib><creatorcontrib>Sismeiro, Odile</creatorcontrib><creatorcontrib>Legendre, Rachel</creatorcontrib><creatorcontrib>Varet, Hugo</creatorcontrib><creatorcontrib>Coppée, Jean‐Yves</creatorcontrib><creatorcontrib>Murray, Gerald L.</creatorcontrib><creatorcontrib>Adler, Ben</creatorcontrib><creatorcontrib>Hendrixson, David R.</creatorcontrib><creatorcontrib>Buschiazzo, Alejandro</creatorcontrib><creatorcontrib>Guo, Shuaiqi</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Picardeau, Mathieu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fule, Lenka</au><au>Halifa, Ruben</au><au>Fontana, Celia</au><au>Sismeiro, Odile</au><au>Legendre, Rachel</au><au>Varet, Hugo</au><au>Coppée, Jean‐Yves</au><au>Murray, Gerald L.</au><au>Adler, Ben</au><au>Hendrixson, David R.</au><au>Buschiazzo, Alejandro</au><au>Guo, Shuaiqi</au><au>Liu, Jun</au><au>Picardeau, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the major determinant of polar flagellation FlhG in the endoflagella‐containing spirochete Leptospira</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2021-11</date><risdate>2021</risdate><volume>116</volume><issue>5</issue><spage>1392</spage><epage>1406</epage><pages>1392-1406</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Spirochetes can be distinguished from other bacteria by their spiral‐shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG− mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild‐type strains in gel‐like environments but not hyperflagellated as reported previously in other bacteria. Cryo‐electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG− mutant in comparison to wild‐type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG− and wild‐type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG− mutant was attenuated for virulence in the hamster model. Cross‐species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes. Spirochetes are helical or flat wave‐shaped cells that possess a cellular ultrastructure unique to bacteria: internal organelles of motility, called periplasmic flagella, that are attached at each cell end. Here we describe the role of FlhG in the biogenesis and localization of periplasmic flagella in Leptospira spp.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>34657338</pmid><doi>10.1111/mmi.14831</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0002-5338-5579</orcidid><orcidid>https://orcid.org/0000-0003-4113-4606</orcidid><orcidid>https://orcid.org/0000-0002-5196-9431</orcidid><orcidid>https://orcid.org/0000-0003-3980-4463</orcidid><orcidid>https://orcid.org/0000-0002-2509-6526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2021-11, Vol.116 (5), p.1392-1406
issn 0950-382X
1365-2958
language eng
recordid cdi_hal_primary_oai_HAL_pasteur_03411258v1
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Complementation
Cryoelectron Microscopy
endoflagellum
Flagella
Flagella - genetics
Flagella - metabolism
FlhG
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Genetic Complementation Test
Humans
Leptospira
Leptospira - cytology
Leptospira - genetics
Leptospira - metabolism
Leptospirosis - microbiology
Life Sciences
Monomeric GTP-Binding Proteins - genetics
Monomeric GTP-Binding Proteins - metabolism
Morphology
motility
Mutants
Mutation
Species
Spirochaetales - genetics
Spirochaetales - metabolism
Spirochetes
Strains (organisms)
Transcription
Transcriptomes
Virulence
title Role of the major determinant of polar flagellation FlhG in the endoflagella‐containing spirochete Leptospira
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20major%20determinant%20of%20polar%20flagellation%20FlhG%20in%20the%20endoflagella%E2%80%90containing%20spirochete%20Leptospira&rft.jtitle=Molecular%20microbiology&rft.au=Fule,%20Lenka&rft.date=2021-11&rft.volume=116&rft.issue=5&rft.spage=1392&rft.epage=1406&rft.pages=1392-1406&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14831&rft_dat=%3Cproquest_hal_p%3E2583318076%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597934378&rft_id=info:pmid/34657338&rfr_iscdi=true