Glider soaring via reinforcement learning in the field
Soaring birds often rely on ascending thermal plumes (thermals) in the atmosphere as they search for prey or migrate across large distances 1 – 4 . The landscape of convective currents is rugged and shifts on timescales of a few minutes as thermals constantly form, disintegrate or are transported aw...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-10, Vol.562 (7726), p.236-239 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 7726 |
container_start_page | 236 |
container_title | Nature (London) |
container_volume | 562 |
creator | Reddy, Gautam Wong-Ng, Jerome Celani, Antonio Sejnowski, Terrence J. Vergassola, Massimo |
description | Soaring birds often rely on ascending thermal plumes (thermals) in the atmosphere as they search for prey or migrate across large distances
1
–
4
. The landscape of convective currents is rugged and shifts on timescales of a few minutes as thermals constantly form, disintegrate or are transported away by the wind
5
,
6
. How soaring birds find and navigate thermals within this complex landscape is unknown. Reinforcement learning
7
provides an appropriate framework in which to identify an effective navigational strategy as a sequence of decisions made in response to environmental cues. Here we use reinforcement learning to train a glider in the field to navigate atmospheric thermals autonomously. We equipped a glider of two-metre wingspan with a flight controller that precisely controlled the bank angle and pitch, modulating these at intervals with the aim of gaining as much lift as possible. A navigational strategy was determined solely from the glider’s pooled experiences, collected over several days in the field. The strategy relies on on-board methods to accurately estimate the local vertical wind accelerations and the roll-wise torques on the glider, which serve as navigational cues. We establish the validity of our learned flight policy through field experiments, numerical simulations and estimates of the noise in measurements caused by atmospheric turbulence. Our results highlight the role of vertical wind accelerations and roll-wise torques as effective mechanosensory cues for soaring birds and provide a navigational strategy that is directly applicable to the development of autonomous soaring vehicles.
A reinforcement learning approach allows a suitably equipped glider to navigate thermal plumes autonomously in an open field. |
doi_str_mv | 10.1038/s41586-018-0533-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_02914599v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573018470</galeid><sourcerecordid>A573018470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-468eca8498d4d54d63b081566a000cefcfbb4a2bed60a742388663e4752d96f83</originalsourceid><addsrcrecordid>eNp10l1r1EAUBuBBLHat_gBvJNgbRVLnO5PLZdG2sChoxcthMjnZTslXZ5Ki_94Jqd1GtuQikHnO4eTMi9Abgs8IZupT4EQomWKiUiwYS_EztCI8kymXKnuOVhjTeKKYPEYvQ7jBGAuS8RfomGHKKBdyheR57UrwSeiMd-0uuXMm8eDaqvMWGmiHpAbj2-nItclwDUnloC5foaPK1AFe379P0M8vn682F-n22_nlZr1NrRRimOYAaxTPVclLwUvJCqyIkNLEWSxUtioKbmgBpcQm45QpJSUDngla5rJS7ASlc99rU-veu8b4P7ozTl-st7o3YYDRa0xzwkWe35Ho38--993tCGHQjQsW6tq00I1BU0IUI0wyHOnpf_SmG30b_yYqmivBMeV7tTM16Gkvgzd2aqrXImNx9TzD-zEXagcteFN3LVQufl74dwe87d2tfozODqD4lNA4e7Drh0VBNAP8HnZmDEFf_vi-tB-ftuurX5uvS01mbX0Xgofq4S4I1lMU9RxFHb2eoqinmrf3-x2LBsqHin_Zi4DOIPRT9MDvL-Dprn8BLXrg3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129854024</pqid></control><display><type>article</type><title>Glider soaring via reinforcement learning in the field</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Reddy, Gautam ; Wong-Ng, Jerome ; Celani, Antonio ; Sejnowski, Terrence J. ; Vergassola, Massimo</creator><creatorcontrib>Reddy, Gautam ; Wong-Ng, Jerome ; Celani, Antonio ; Sejnowski, Terrence J. ; Vergassola, Massimo</creatorcontrib><description>Soaring birds often rely on ascending thermal plumes (thermals) in the atmosphere as they search for prey or migrate across large distances
1
–
4
. The landscape of convective currents is rugged and shifts on timescales of a few minutes as thermals constantly form, disintegrate or are transported away by the wind
5
,
6
. How soaring birds find and navigate thermals within this complex landscape is unknown. Reinforcement learning
7
provides an appropriate framework in which to identify an effective navigational strategy as a sequence of decisions made in response to environmental cues. Here we use reinforcement learning to train a glider in the field to navigate atmospheric thermals autonomously. We equipped a glider of two-metre wingspan with a flight controller that precisely controlled the bank angle and pitch, modulating these at intervals with the aim of gaining as much lift as possible. A navigational strategy was determined solely from the glider’s pooled experiences, collected over several days in the field. The strategy relies on on-board methods to accurately estimate the local vertical wind accelerations and the roll-wise torques on the glider, which serve as navigational cues. We establish the validity of our learned flight policy through field experiments, numerical simulations and estimates of the noise in measurements caused by atmospheric turbulence. Our results highlight the role of vertical wind accelerations and roll-wise torques as effective mechanosensory cues for soaring birds and provide a navigational strategy that is directly applicable to the development of autonomous soaring vehicles.
A reinforcement learning approach allows a suitably equipped glider to navigate thermal plumes autonomously in an open field.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0533-0</identifier><identifier>PMID: 30232456</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/984 ; 639/705/1042 ; Air Movements ; Algorithms ; Analysis ; Animals ; Artificial Intelligence ; Atmosphere ; Atmospheric turbulence ; Automatic ; Autonomous navigation ; Banks (Finance) ; Birds ; Birds - anatomy & histology ; Birds - physiology ; Computer Science ; Computer simulation ; Controllers ; Convective currents ; Cues ; Decision making ; Engineering Sciences ; Estimates ; Field tests ; Flight ; Flight, Animal - physiology ; Gliders ; Gliding and soaring ; Heated water ; Humanities and Social Sciences ; Learning - physiology ; Letter ; Machine learning ; Migration ; multidisciplinary ; Navigation behavior ; Numerical analysis ; Numerical simulations ; Prey ; Reinforcement ; Science ; Science (multidisciplinary) ; Simulation ; Soaring ; Spatial Navigation - physiology ; Strategy ; Temperature ; Thermal plumes ; Thermals ; Torque ; Unmanned aerial vehicles ; Vehicles ; Velocity ; Wind ; Wings, Animal - anatomy & histology ; Wings, Animal - physiology</subject><ispartof>Nature (London), 2018-10, Vol.562 (7726), p.236-239</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 11, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-468eca8498d4d54d63b081566a000cefcfbb4a2bed60a742388663e4752d96f83</citedby><cites>FETCH-LOGICAL-c655t-468eca8498d4d54d63b081566a000cefcfbb4a2bed60a742388663e4752d96f83</cites><orcidid>0000-0001-8287-5203 ; 0000-0002-1276-9613 ; 0000-0002-7212-8244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0533-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0533-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30232456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-02914599$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Reddy, Gautam</creatorcontrib><creatorcontrib>Wong-Ng, Jerome</creatorcontrib><creatorcontrib>Celani, Antonio</creatorcontrib><creatorcontrib>Sejnowski, Terrence J.</creatorcontrib><creatorcontrib>Vergassola, Massimo</creatorcontrib><title>Glider soaring via reinforcement learning in the field</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Soaring birds often rely on ascending thermal plumes (thermals) in the atmosphere as they search for prey or migrate across large distances
1
–
4
. The landscape of convective currents is rugged and shifts on timescales of a few minutes as thermals constantly form, disintegrate or are transported away by the wind
5
,
6
. How soaring birds find and navigate thermals within this complex landscape is unknown. Reinforcement learning
7
provides an appropriate framework in which to identify an effective navigational strategy as a sequence of decisions made in response to environmental cues. Here we use reinforcement learning to train a glider in the field to navigate atmospheric thermals autonomously. We equipped a glider of two-metre wingspan with a flight controller that precisely controlled the bank angle and pitch, modulating these at intervals with the aim of gaining as much lift as possible. A navigational strategy was determined solely from the glider’s pooled experiences, collected over several days in the field. The strategy relies on on-board methods to accurately estimate the local vertical wind accelerations and the roll-wise torques on the glider, which serve as navigational cues. We establish the validity of our learned flight policy through field experiments, numerical simulations and estimates of the noise in measurements caused by atmospheric turbulence. Our results highlight the role of vertical wind accelerations and roll-wise torques as effective mechanosensory cues for soaring birds and provide a navigational strategy that is directly applicable to the development of autonomous soaring vehicles.
A reinforcement learning approach allows a suitably equipped glider to navigate thermal plumes autonomously in an open field.</description><subject>639/166/984</subject><subject>639/705/1042</subject><subject>Air Movements</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Atmosphere</subject><subject>Atmospheric turbulence</subject><subject>Automatic</subject><subject>Autonomous navigation</subject><subject>Banks (Finance)</subject><subject>Birds</subject><subject>Birds - anatomy & histology</subject><subject>Birds - physiology</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Controllers</subject><subject>Convective currents</subject><subject>Cues</subject><subject>Decision making</subject><subject>Engineering Sciences</subject><subject>Estimates</subject><subject>Field tests</subject><subject>Flight</subject><subject>Flight, Animal - physiology</subject><subject>Gliders</subject><subject>Gliding and soaring</subject><subject>Heated water</subject><subject>Humanities and Social Sciences</subject><subject>Learning - physiology</subject><subject>Letter</subject><subject>Machine learning</subject><subject>Migration</subject><subject>multidisciplinary</subject><subject>Navigation behavior</subject><subject>Numerical analysis</subject><subject>Numerical simulations</subject><subject>Prey</subject><subject>Reinforcement</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Soaring</subject><subject>Spatial Navigation - physiology</subject><subject>Strategy</subject><subject>Temperature</subject><subject>Thermal plumes</subject><subject>Thermals</subject><subject>Torque</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><subject>Velocity</subject><subject>Wind</subject><subject>Wings, Animal - anatomy & histology</subject><subject>Wings, Animal - physiology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l1r1EAUBuBBLHat_gBvJNgbRVLnO5PLZdG2sChoxcthMjnZTslXZ5Ki_94Jqd1GtuQikHnO4eTMi9Abgs8IZupT4EQomWKiUiwYS_EztCI8kymXKnuOVhjTeKKYPEYvQ7jBGAuS8RfomGHKKBdyheR57UrwSeiMd-0uuXMm8eDaqvMWGmiHpAbj2-nItclwDUnloC5foaPK1AFe379P0M8vn682F-n22_nlZr1NrRRimOYAaxTPVclLwUvJCqyIkNLEWSxUtioKbmgBpcQm45QpJSUDngla5rJS7ASlc99rU-veu8b4P7ozTl-st7o3YYDRa0xzwkWe35Ho38--993tCGHQjQsW6tq00I1BU0IUI0wyHOnpf_SmG30b_yYqmivBMeV7tTM16Gkvgzd2aqrXImNx9TzD-zEXagcteFN3LVQufl74dwe87d2tfozODqD4lNA4e7Drh0VBNAP8HnZmDEFf_vi-tB-ftuurX5uvS01mbX0Xgofq4S4I1lMU9RxFHb2eoqinmrf3-x2LBsqHin_Zi4DOIPRT9MDvL-Dprn8BLXrg3Q</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Reddy, Gautam</creator><creator>Wong-Ng, Jerome</creator><creator>Celani, Antonio</creator><creator>Sejnowski, Terrence J.</creator><creator>Vergassola, Massimo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8287-5203</orcidid><orcidid>https://orcid.org/0000-0002-1276-9613</orcidid><orcidid>https://orcid.org/0000-0002-7212-8244</orcidid></search><sort><creationdate>201810</creationdate><title>Glider soaring via reinforcement learning in the field</title><author>Reddy, Gautam ; Wong-Ng, Jerome ; Celani, Antonio ; Sejnowski, Terrence J. ; Vergassola, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-468eca8498d4d54d63b081566a000cefcfbb4a2bed60a742388663e4752d96f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/166/984</topic><topic>639/705/1042</topic><topic>Air Movements</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Atmosphere</topic><topic>Atmospheric turbulence</topic><topic>Automatic</topic><topic>Autonomous navigation</topic><topic>Banks (Finance)</topic><topic>Birds</topic><topic>Birds - anatomy & histology</topic><topic>Birds - physiology</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Controllers</topic><topic>Convective currents</topic><topic>Cues</topic><topic>Decision making</topic><topic>Engineering Sciences</topic><topic>Estimates</topic><topic>Field tests</topic><topic>Flight</topic><topic>Flight, Animal - physiology</topic><topic>Gliders</topic><topic>Gliding and soaring</topic><topic>Heated water</topic><topic>Humanities and Social Sciences</topic><topic>Learning - physiology</topic><topic>Letter</topic><topic>Machine learning</topic><topic>Migration</topic><topic>multidisciplinary</topic><topic>Navigation behavior</topic><topic>Numerical analysis</topic><topic>Numerical simulations</topic><topic>Prey</topic><topic>Reinforcement</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Soaring</topic><topic>Spatial Navigation - physiology</topic><topic>Strategy</topic><topic>Temperature</topic><topic>Thermal plumes</topic><topic>Thermals</topic><topic>Torque</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><topic>Velocity</topic><topic>Wind</topic><topic>Wings, Animal - anatomy & histology</topic><topic>Wings, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Gautam</creatorcontrib><creatorcontrib>Wong-Ng, Jerome</creatorcontrib><creatorcontrib>Celani, Antonio</creatorcontrib><creatorcontrib>Sejnowski, Terrence J.</creatorcontrib><creatorcontrib>Vergassola, Massimo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, Gautam</au><au>Wong-Ng, Jerome</au><au>Celani, Antonio</au><au>Sejnowski, Terrence J.</au><au>Vergassola, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glider soaring via reinforcement learning in the field</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-10</date><risdate>2018</risdate><volume>562</volume><issue>7726</issue><spage>236</spage><epage>239</epage><pages>236-239</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Soaring birds often rely on ascending thermal plumes (thermals) in the atmosphere as they search for prey or migrate across large distances
1
–
4
. The landscape of convective currents is rugged and shifts on timescales of a few minutes as thermals constantly form, disintegrate or are transported away by the wind
5
,
6
. How soaring birds find and navigate thermals within this complex landscape is unknown. Reinforcement learning
7
provides an appropriate framework in which to identify an effective navigational strategy as a sequence of decisions made in response to environmental cues. Here we use reinforcement learning to train a glider in the field to navigate atmospheric thermals autonomously. We equipped a glider of two-metre wingspan with a flight controller that precisely controlled the bank angle and pitch, modulating these at intervals with the aim of gaining as much lift as possible. A navigational strategy was determined solely from the glider’s pooled experiences, collected over several days in the field. The strategy relies on on-board methods to accurately estimate the local vertical wind accelerations and the roll-wise torques on the glider, which serve as navigational cues. We establish the validity of our learned flight policy through field experiments, numerical simulations and estimates of the noise in measurements caused by atmospheric turbulence. Our results highlight the role of vertical wind accelerations and roll-wise torques as effective mechanosensory cues for soaring birds and provide a navigational strategy that is directly applicable to the development of autonomous soaring vehicles.
A reinforcement learning approach allows a suitably equipped glider to navigate thermal plumes autonomously in an open field.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30232456</pmid><doi>10.1038/s41586-018-0533-0</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8287-5203</orcidid><orcidid>https://orcid.org/0000-0002-1276-9613</orcidid><orcidid>https://orcid.org/0000-0002-7212-8244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-10, Vol.562 (7726), p.236-239 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_pasteur_02914599v1 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 639/166/984 639/705/1042 Air Movements Algorithms Analysis Animals Artificial Intelligence Atmosphere Atmospheric turbulence Automatic Autonomous navigation Banks (Finance) Birds Birds - anatomy & histology Birds - physiology Computer Science Computer simulation Controllers Convective currents Cues Decision making Engineering Sciences Estimates Field tests Flight Flight, Animal - physiology Gliders Gliding and soaring Heated water Humanities and Social Sciences Learning - physiology Letter Machine learning Migration multidisciplinary Navigation behavior Numerical analysis Numerical simulations Prey Reinforcement Science Science (multidisciplinary) Simulation Soaring Spatial Navigation - physiology Strategy Temperature Thermal plumes Thermals Torque Unmanned aerial vehicles Vehicles Velocity Wind Wings, Animal - anatomy & histology Wings, Animal - physiology |
title | Glider soaring via reinforcement learning in the field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glider%20soaring%20via%20reinforcement%20learning%20in%20the%20field&rft.jtitle=Nature%20(London)&rft.au=Reddy,%20Gautam&rft.date=2018-10&rft.volume=562&rft.issue=7726&rft.spage=236&rft.epage=239&rft.pages=236-239&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0533-0&rft_dat=%3Cgale_hal_p%3EA573018470%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129854024&rft_id=info:pmid/30232456&rft_galeid=A573018470&rfr_iscdi=true |