Natural noncanonical protein splicing yields products with diverse b-amino acid residues

Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widesp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-02, Vol.359 (6377), p.779-782
Hauptverfasser: Morinaka, Brandon I, Lakis, Edgars, Verest, Marjan, Helf, Maximilian J, Scalvenzi, Thibault, Vagstad, Anna L, Sims, James, Sunagawa, Shinichi, Gugger, Muriel, Piel, Jörn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 782
container_issue 6377
container_start_page 779
container_title Science (American Association for the Advancement of Science)
container_volume 359
creator Morinaka, Brandon I
Lakis, Edgars
Verest, Marjan
Helf, Maximilian J
Scalvenzi, Thibault
Vagstad, Anna L
Sims, James
Sunagawa, Shinichi
Gugger, Muriel
Piel, Jörn
description Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widespread in bacteria and is catalyzed by an enzyme belonging to a previously uncharacterized radical S-adenosylmethionine family. We show that the b-amino acids result from an unusual protein splicing process involving backbone carbon-carbon bond cleavage and net excision of tyramine. The reaction can be used to incorporate diverse and multiple b-amino acids into genetically encoded precursors in Escherichia coli. In addition to enlarging the set of basic amino acid components, the excision generates keto functions that are useful as orthogonal reaction sites for chemical diversification.
doi_str_mv 10.1126/science.aao0157
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_02044549v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_pasteur_02044549v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-g145t-ee6306a4c18ef51529da86afb7791509f49f8a35678324ec79a0fb43af2ffb363</originalsourceid><addsrcrecordid>eNotjF1LwzAYhYMobk6vvc0fyHzz2eZyDHXC0BsF78rbNNkiXVuSdrJ_70RvzuE5DxxC7jksORfmIbvoO-eXiD1wXVyQOQermRUgL8kcQBpWQqFn5CbnL4Czs_KazIRVyqqynJPPVxynhC3t-s7hOaI7w5D60ceO5qGNLnY7eoq-bfLv3kxuzPQ7jnvaxKNP2dOa4SF2PUUXG5p8js3k8y25Cthmf_ffC_Lx9Pi-3rDt2_PLerVlO670yLw3Egwqx0sfNNfCNlgaDHVRWK7BBmVDiVKbopRCeVdYhFAriUGEUEsjF4T9_e6xrYYUD5hOVY-x2qy21YB59FOqQIBSWtkjlz_h1Fwb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Natural noncanonical protein splicing yields products with diverse b-amino acid residues</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Morinaka, Brandon I ; Lakis, Edgars ; Verest, Marjan ; Helf, Maximilian J ; Scalvenzi, Thibault ; Vagstad, Anna L ; Sims, James ; Sunagawa, Shinichi ; Gugger, Muriel ; Piel, Jörn</creator><creatorcontrib>Morinaka, Brandon I ; Lakis, Edgars ; Verest, Marjan ; Helf, Maximilian J ; Scalvenzi, Thibault ; Vagstad, Anna L ; Sims, James ; Sunagawa, Shinichi ; Gugger, Muriel ; Piel, Jörn</creatorcontrib><description>Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widespread in bacteria and is catalyzed by an enzyme belonging to a previously uncharacterized radical S-adenosylmethionine family. We show that the b-amino acids result from an unusual protein splicing process involving backbone carbon-carbon bond cleavage and net excision of tyramine. The reaction can be used to incorporate diverse and multiple b-amino acids into genetically encoded precursors in Escherichia coli. In addition to enlarging the set of basic amino acid components, the excision generates keto functions that are useful as orthogonal reaction sites for chemical diversification.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aao0157</identifier><identifier>PMID: 29449488</identifier><language>eng</language><publisher>American Association for the Advancement of Science (AAAS)</publisher><subject>Amides ; Amino Acid Sequence ; Amino Acids ; Bacterial Proteins ; Cyanobacteria ; Escherichia coli ; Genetic Loci ; Life Sciences ; Microbiology and Parasitology ; Mutation ; Protein Processing, Post-Translational ; Protein Splicing ; Tyramine</subject><ispartof>Science (American Association for the Advancement of Science), 2018-02, Vol.359 (6377), p.779-782</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://pasteur.hal.science/pasteur-02044549$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morinaka, Brandon I</creatorcontrib><creatorcontrib>Lakis, Edgars</creatorcontrib><creatorcontrib>Verest, Marjan</creatorcontrib><creatorcontrib>Helf, Maximilian J</creatorcontrib><creatorcontrib>Scalvenzi, Thibault</creatorcontrib><creatorcontrib>Vagstad, Anna L</creatorcontrib><creatorcontrib>Sims, James</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Gugger, Muriel</creatorcontrib><creatorcontrib>Piel, Jörn</creatorcontrib><title>Natural noncanonical protein splicing yields products with diverse b-amino acid residues</title><title>Science (American Association for the Advancement of Science)</title><description>Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widespread in bacteria and is catalyzed by an enzyme belonging to a previously uncharacterized radical S-adenosylmethionine family. We show that the b-amino acids result from an unusual protein splicing process involving backbone carbon-carbon bond cleavage and net excision of tyramine. The reaction can be used to incorporate diverse and multiple b-amino acids into genetically encoded precursors in Escherichia coli. In addition to enlarging the set of basic amino acid components, the excision generates keto functions that are useful as orthogonal reaction sites for chemical diversification.</description><subject>Amides</subject><subject>Amino Acid Sequence</subject><subject>Amino Acids</subject><subject>Bacterial Proteins</subject><subject>Cyanobacteria</subject><subject>Escherichia coli</subject><subject>Genetic Loci</subject><subject>Life Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Mutation</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Splicing</subject><subject>Tyramine</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotjF1LwzAYhYMobk6vvc0fyHzz2eZyDHXC0BsF78rbNNkiXVuSdrJ_70RvzuE5DxxC7jksORfmIbvoO-eXiD1wXVyQOQermRUgL8kcQBpWQqFn5CbnL4Czs_KazIRVyqqynJPPVxynhC3t-s7hOaI7w5D60ceO5qGNLnY7eoq-bfLv3kxuzPQ7jnvaxKNP2dOa4SF2PUUXG5p8js3k8y25Cthmf_ffC_Lx9Pi-3rDt2_PLerVlO670yLw3Egwqx0sfNNfCNlgaDHVRWK7BBmVDiVKbopRCeVdYhFAriUGEUEsjF4T9_e6xrYYUD5hOVY-x2qy21YB59FOqQIBSWtkjlz_h1Fwb</recordid><startdate>20180216</startdate><enddate>20180216</enddate><creator>Morinaka, Brandon I</creator><creator>Lakis, Edgars</creator><creator>Verest, Marjan</creator><creator>Helf, Maximilian J</creator><creator>Scalvenzi, Thibault</creator><creator>Vagstad, Anna L</creator><creator>Sims, James</creator><creator>Sunagawa, Shinichi</creator><creator>Gugger, Muriel</creator><creator>Piel, Jörn</creator><general>American Association for the Advancement of Science (AAAS)</general><scope>1XC</scope></search><sort><creationdate>20180216</creationdate><title>Natural noncanonical protein splicing yields products with diverse b-amino acid residues</title><author>Morinaka, Brandon I ; Lakis, Edgars ; Verest, Marjan ; Helf, Maximilian J ; Scalvenzi, Thibault ; Vagstad, Anna L ; Sims, James ; Sunagawa, Shinichi ; Gugger, Muriel ; Piel, Jörn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g145t-ee6306a4c18ef51529da86afb7791509f49f8a35678324ec79a0fb43af2ffb363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amides</topic><topic>Amino Acid Sequence</topic><topic>Amino Acids</topic><topic>Bacterial Proteins</topic><topic>Cyanobacteria</topic><topic>Escherichia coli</topic><topic>Genetic Loci</topic><topic>Life Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Mutation</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Splicing</topic><topic>Tyramine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morinaka, Brandon I</creatorcontrib><creatorcontrib>Lakis, Edgars</creatorcontrib><creatorcontrib>Verest, Marjan</creatorcontrib><creatorcontrib>Helf, Maximilian J</creatorcontrib><creatorcontrib>Scalvenzi, Thibault</creatorcontrib><creatorcontrib>Vagstad, Anna L</creatorcontrib><creatorcontrib>Sims, James</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Gugger, Muriel</creatorcontrib><creatorcontrib>Piel, Jörn</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morinaka, Brandon I</au><au>Lakis, Edgars</au><au>Verest, Marjan</au><au>Helf, Maximilian J</au><au>Scalvenzi, Thibault</au><au>Vagstad, Anna L</au><au>Sims, James</au><au>Sunagawa, Shinichi</au><au>Gugger, Muriel</au><au>Piel, Jörn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural noncanonical protein splicing yields products with diverse b-amino acid residues</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2018-02-16</date><risdate>2018</risdate><volume>359</volume><issue>6377</issue><spage>779</spage><epage>782</epage><pages>779-782</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widespread in bacteria and is catalyzed by an enzyme belonging to a previously uncharacterized radical S-adenosylmethionine family. We show that the b-amino acids result from an unusual protein splicing process involving backbone carbon-carbon bond cleavage and net excision of tyramine. The reaction can be used to incorporate diverse and multiple b-amino acids into genetically encoded precursors in Escherichia coli. In addition to enlarging the set of basic amino acid components, the excision generates keto functions that are useful as orthogonal reaction sites for chemical diversification.</abstract><pub>American Association for the Advancement of Science (AAAS)</pub><pmid>29449488</pmid><doi>10.1126/science.aao0157</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-02, Vol.359 (6377), p.779-782
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_pasteur_02044549v1
source Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Amides
Amino Acid Sequence
Amino Acids
Bacterial Proteins
Cyanobacteria
Escherichia coli
Genetic Loci
Life Sciences
Microbiology and Parasitology
Mutation
Protein Processing, Post-Translational
Protein Splicing
Tyramine
title Natural noncanonical protein splicing yields products with diverse b-amino acid residues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20noncanonical%20protein%20splicing%20yields%20products%20with%20diverse%20b-amino%20acid%20residues&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Morinaka,%20Brandon%20I&rft.date=2018-02-16&rft.volume=359&rft.issue=6377&rft.spage=779&rft.epage=782&rft.pages=779-782&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aao0157&rft_dat=%3Chal%3Eoai_HAL_pasteur_02044549v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29449488&rfr_iscdi=true