Natural noncanonical protein splicing yields products with diverse b-amino acid residues
Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widesp...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2018-02, Vol.359 (6377), p.779-782 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | 6377 |
container_start_page | 779 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 359 |
creator | Morinaka, Brandon I Lakis, Edgars Verest, Marjan Helf, Maximilian J Scalvenzi, Thibault Vagstad, Anna L Sims, James Sunagawa, Shinichi Gugger, Muriel Piel, Jörn |
description | Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widespread in bacteria and is catalyzed by an enzyme belonging to a previously uncharacterized radical S-adenosylmethionine family. We show that the b-amino acids result from an unusual protein splicing process involving backbone carbon-carbon bond cleavage and net excision of tyramine. The reaction can be used to incorporate diverse and multiple b-amino acids into genetically encoded precursors in Escherichia coli. In addition to enlarging the set of basic amino acid components, the excision generates keto functions that are useful as orthogonal reaction sites for chemical diversification. |
doi_str_mv | 10.1126/science.aao0157 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_02044549v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_pasteur_02044549v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-g145t-ee6306a4c18ef51529da86afb7791509f49f8a35678324ec79a0fb43af2ffb363</originalsourceid><addsrcrecordid>eNotjF1LwzAYhYMobk6vvc0fyHzz2eZyDHXC0BsF78rbNNkiXVuSdrJ_70RvzuE5DxxC7jksORfmIbvoO-eXiD1wXVyQOQermRUgL8kcQBpWQqFn5CbnL4Czs_KazIRVyqqynJPPVxynhC3t-s7hOaI7w5D60ceO5qGNLnY7eoq-bfLv3kxuzPQ7jnvaxKNP2dOa4SF2PUUXG5p8js3k8y25Cthmf_ffC_Lx9Pi-3rDt2_PLerVlO670yLw3Egwqx0sfNNfCNlgaDHVRWK7BBmVDiVKbopRCeVdYhFAriUGEUEsjF4T9_e6xrYYUD5hOVY-x2qy21YB59FOqQIBSWtkjlz_h1Fwb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Natural noncanonical protein splicing yields products with diverse b-amino acid residues</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Morinaka, Brandon I ; Lakis, Edgars ; Verest, Marjan ; Helf, Maximilian J ; Scalvenzi, Thibault ; Vagstad, Anna L ; Sims, James ; Sunagawa, Shinichi ; Gugger, Muriel ; Piel, Jörn</creator><creatorcontrib>Morinaka, Brandon I ; Lakis, Edgars ; Verest, Marjan ; Helf, Maximilian J ; Scalvenzi, Thibault ; Vagstad, Anna L ; Sims, James ; Sunagawa, Shinichi ; Gugger, Muriel ; Piel, Jörn</creatorcontrib><description>Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widespread in bacteria and is catalyzed by an enzyme belonging to a previously uncharacterized radical S-adenosylmethionine family. We show that the b-amino acids result from an unusual protein splicing process involving backbone carbon-carbon bond cleavage and net excision of tyramine. The reaction can be used to incorporate diverse and multiple b-amino acids into genetically encoded precursors in Escherichia coli. In addition to enlarging the set of basic amino acid components, the excision generates keto functions that are useful as orthogonal reaction sites for chemical diversification.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aao0157</identifier><identifier>PMID: 29449488</identifier><language>eng</language><publisher>American Association for the Advancement of Science (AAAS)</publisher><subject>Amides ; Amino Acid Sequence ; Amino Acids ; Bacterial Proteins ; Cyanobacteria ; Escherichia coli ; Genetic Loci ; Life Sciences ; Microbiology and Parasitology ; Mutation ; Protein Processing, Post-Translational ; Protein Splicing ; Tyramine</subject><ispartof>Science (American Association for the Advancement of Science), 2018-02, Vol.359 (6377), p.779-782</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://pasteur.hal.science/pasteur-02044549$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morinaka, Brandon I</creatorcontrib><creatorcontrib>Lakis, Edgars</creatorcontrib><creatorcontrib>Verest, Marjan</creatorcontrib><creatorcontrib>Helf, Maximilian J</creatorcontrib><creatorcontrib>Scalvenzi, Thibault</creatorcontrib><creatorcontrib>Vagstad, Anna L</creatorcontrib><creatorcontrib>Sims, James</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Gugger, Muriel</creatorcontrib><creatorcontrib>Piel, Jörn</creatorcontrib><title>Natural noncanonical protein splicing yields products with diverse b-amino acid residues</title><title>Science (American Association for the Advancement of Science)</title><description>Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widespread in bacteria and is catalyzed by an enzyme belonging to a previously uncharacterized radical S-adenosylmethionine family. We show that the b-amino acids result from an unusual protein splicing process involving backbone carbon-carbon bond cleavage and net excision of tyramine. The reaction can be used to incorporate diverse and multiple b-amino acids into genetically encoded precursors in Escherichia coli. In addition to enlarging the set of basic amino acid components, the excision generates keto functions that are useful as orthogonal reaction sites for chemical diversification.</description><subject>Amides</subject><subject>Amino Acid Sequence</subject><subject>Amino Acids</subject><subject>Bacterial Proteins</subject><subject>Cyanobacteria</subject><subject>Escherichia coli</subject><subject>Genetic Loci</subject><subject>Life Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Mutation</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Splicing</subject><subject>Tyramine</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotjF1LwzAYhYMobk6vvc0fyHzz2eZyDHXC0BsF78rbNNkiXVuSdrJ_70RvzuE5DxxC7jksORfmIbvoO-eXiD1wXVyQOQermRUgL8kcQBpWQqFn5CbnL4Czs_KazIRVyqqynJPPVxynhC3t-s7hOaI7w5D60ceO5qGNLnY7eoq-bfLv3kxuzPQ7jnvaxKNP2dOa4SF2PUUXG5p8js3k8y25Cthmf_ffC_Lx9Pi-3rDt2_PLerVlO670yLw3Egwqx0sfNNfCNlgaDHVRWK7BBmVDiVKbopRCeVdYhFAriUGEUEsjF4T9_e6xrYYUD5hOVY-x2qy21YB59FOqQIBSWtkjlz_h1Fwb</recordid><startdate>20180216</startdate><enddate>20180216</enddate><creator>Morinaka, Brandon I</creator><creator>Lakis, Edgars</creator><creator>Verest, Marjan</creator><creator>Helf, Maximilian J</creator><creator>Scalvenzi, Thibault</creator><creator>Vagstad, Anna L</creator><creator>Sims, James</creator><creator>Sunagawa, Shinichi</creator><creator>Gugger, Muriel</creator><creator>Piel, Jörn</creator><general>American Association for the Advancement of Science (AAAS)</general><scope>1XC</scope></search><sort><creationdate>20180216</creationdate><title>Natural noncanonical protein splicing yields products with diverse b-amino acid residues</title><author>Morinaka, Brandon I ; Lakis, Edgars ; Verest, Marjan ; Helf, Maximilian J ; Scalvenzi, Thibault ; Vagstad, Anna L ; Sims, James ; Sunagawa, Shinichi ; Gugger, Muriel ; Piel, Jörn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g145t-ee6306a4c18ef51529da86afb7791509f49f8a35678324ec79a0fb43af2ffb363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amides</topic><topic>Amino Acid Sequence</topic><topic>Amino Acids</topic><topic>Bacterial Proteins</topic><topic>Cyanobacteria</topic><topic>Escherichia coli</topic><topic>Genetic Loci</topic><topic>Life Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Mutation</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Splicing</topic><topic>Tyramine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morinaka, Brandon I</creatorcontrib><creatorcontrib>Lakis, Edgars</creatorcontrib><creatorcontrib>Verest, Marjan</creatorcontrib><creatorcontrib>Helf, Maximilian J</creatorcontrib><creatorcontrib>Scalvenzi, Thibault</creatorcontrib><creatorcontrib>Vagstad, Anna L</creatorcontrib><creatorcontrib>Sims, James</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Gugger, Muriel</creatorcontrib><creatorcontrib>Piel, Jörn</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morinaka, Brandon I</au><au>Lakis, Edgars</au><au>Verest, Marjan</au><au>Helf, Maximilian J</au><au>Scalvenzi, Thibault</au><au>Vagstad, Anna L</au><au>Sims, James</au><au>Sunagawa, Shinichi</au><au>Gugger, Muriel</au><au>Piel, Jörn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural noncanonical protein splicing yields products with diverse b-amino acid residues</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2018-02-16</date><risdate>2018</risdate><volume>359</volume><issue>6377</issue><spage>779</spage><epage>782</epage><pages>779-782</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on a-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create b-amino acid-containing products. The transformation is widespread in bacteria and is catalyzed by an enzyme belonging to a previously uncharacterized radical S-adenosylmethionine family. We show that the b-amino acids result from an unusual protein splicing process involving backbone carbon-carbon bond cleavage and net excision of tyramine. The reaction can be used to incorporate diverse and multiple b-amino acids into genetically encoded precursors in Escherichia coli. In addition to enlarging the set of basic amino acid components, the excision generates keto functions that are useful as orthogonal reaction sites for chemical diversification.</abstract><pub>American Association for the Advancement of Science (AAAS)</pub><pmid>29449488</pmid><doi>10.1126/science.aao0157</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-02, Vol.359 (6377), p.779-782 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_pasteur_02044549v1 |
source | Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Amides Amino Acid Sequence Amino Acids Bacterial Proteins Cyanobacteria Escherichia coli Genetic Loci Life Sciences Microbiology and Parasitology Mutation Protein Processing, Post-Translational Protein Splicing Tyramine |
title | Natural noncanonical protein splicing yields products with diverse b-amino acid residues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20noncanonical%20protein%20splicing%20yields%20products%20with%20diverse%20b-amino%20acid%20residues&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Morinaka,%20Brandon%20I&rft.date=2018-02-16&rft.volume=359&rft.issue=6377&rft.spage=779&rft.epage=782&rft.pages=779-782&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aao0157&rft_dat=%3Chal%3Eoai_HAL_pasteur_02044549v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29449488&rfr_iscdi=true |