Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels
Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2016-05, Vol.90 (3), p.452-470 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 470 |
---|---|
container_issue | 3 |
container_start_page | 452 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 90 |
creator | Nemecz, Ákos Prevost, Marie S. Menny, Anaïs Corringer, Pierre-Jean |
description | Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
In this Review, Corringer and colleagues summarize the recent structural data of pentameric ligand-gated ion channels, outlining the gating-transition mechanism, and correlate the plethora of functional data with the aim of classifying the structural conformations observed into the MWC model states. |
doi_str_mv | 10.1016/j.neuron.2016.03.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_01721239v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731630023X</els_id><sourcerecordid>1787478306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9d664b544aa728942e9bd87e09194b62349ed542af4308910553a982d49589ff3</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-A5GAL32Zbf7NJHkRylLbwhYF65sQssmdbZaZZE1mCn57U6b2wYfChcslv3OTnIPQR0rWlNDu_LCOMOcU16xOa8JrsVdoRYmWjaBav0YronTXdEzyE_SulAMhVLSavkUnTNKWdlyt0K_LEfI-xD2-TQO4ebAZ34K7tzGUseDU4x9hH-2A77KNxc9uCiniEPF3iJOt2uDwNuxt9M2VncDjm3q8qfIIQ3mP3vR2KPDhqZ-in18v7zbXzfbb1c3mYtu4VpCp0b7rxK4VwlrJlBYM9M4rCURTLXYd40KDbwWzveD1S5S0LbdaMS90q3Tf81PULHvv7WCOOYw2_zHJBnN9sTVHW6ZqlCFUMsq4fqCVP1v4Y06_ZyiTGUNxMAw2QpqLoVJJIRUnXUU__4ce0pyrIQulKSVcVUoslMuplAz98ysoMY9pmYNZ0jKPaRnCa7Eq-_S0fN6N4J9F_-KpwJcFqGbCQ4BsigsQHfiQwU3Gp_DyDX8Ba_mlbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787911038</pqid></control><display><type>article</type><title>Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nemecz, Ákos ; Prevost, Marie S. ; Menny, Anaïs ; Corringer, Pierre-Jean</creator><creatorcontrib>Nemecz, Ákos ; Prevost, Marie S. ; Menny, Anaïs ; Corringer, Pierre-Jean</creatorcontrib><description>Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
In this Review, Corringer and colleagues summarize the recent structural data of pentameric ligand-gated ion channels, outlining the gating-transition mechanism, and correlate the plethora of functional data with the aim of classifying the structural conformations observed into the MWC model states.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2016.03.032</identifier><identifier>PMID: 27151638</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alzheimer's disease ; Animals ; Biophysical Phenomena - physiology ; Cognitive science ; Humans ; Ion Channel Gating - physiology ; Life Sciences ; Ligand-Gated Ion Channels - metabolism ; Ligands ; Mammals ; Models, Molecular ; Mutation ; Neuroscience ; Neurotransmitters ; Physiology ; Receptors, Glycine - metabolism ; Signal transduction ; Signal Transduction - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2016-05, Vol.90 (3), p.452-470</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 4, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9d664b544aa728942e9bd87e09194b62349ed542af4308910553a982d49589ff3</citedby><cites>FETCH-LOGICAL-c540t-9d664b544aa728942e9bd87e09194b62349ed542af4308910553a982d49589ff3</cites><orcidid>0000-0001-5621-3708 ; 0000-0002-6044-4119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2016.03.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27151638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-01721239$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nemecz, Ákos</creatorcontrib><creatorcontrib>Prevost, Marie S.</creatorcontrib><creatorcontrib>Menny, Anaïs</creatorcontrib><creatorcontrib>Corringer, Pierre-Jean</creatorcontrib><title>Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
In this Review, Corringer and colleagues summarize the recent structural data of pentameric ligand-gated ion channels, outlining the gating-transition mechanism, and correlate the plethora of functional data with the aim of classifying the structural conformations observed into the MWC model states.</description><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Biophysical Phenomena - physiology</subject><subject>Cognitive science</subject><subject>Humans</subject><subject>Ion Channel Gating - physiology</subject><subject>Life Sciences</subject><subject>Ligand-Gated Ion Channels - metabolism</subject><subject>Ligands</subject><subject>Mammals</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Neuroscience</subject><subject>Neurotransmitters</subject><subject>Physiology</subject><subject>Receptors, Glycine - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV9rFDEUxYModq1-A5GAL32Zbf7NJHkRylLbwhYF65sQssmdbZaZZE1mCn57U6b2wYfChcslv3OTnIPQR0rWlNDu_LCOMOcU16xOa8JrsVdoRYmWjaBav0YronTXdEzyE_SulAMhVLSavkUnTNKWdlyt0K_LEfI-xD2-TQO4ebAZ34K7tzGUseDU4x9hH-2A77KNxc9uCiniEPF3iJOt2uDwNuxt9M2VncDjm3q8qfIIQ3mP3vR2KPDhqZ-in18v7zbXzfbb1c3mYtu4VpCp0b7rxK4VwlrJlBYM9M4rCURTLXYd40KDbwWzveD1S5S0LbdaMS90q3Tf81PULHvv7WCOOYw2_zHJBnN9sTVHW6ZqlCFUMsq4fqCVP1v4Y06_ZyiTGUNxMAw2QpqLoVJJIRUnXUU__4ce0pyrIQulKSVcVUoslMuplAz98ysoMY9pmYNZ0jKPaRnCa7Eq-_S0fN6N4J9F_-KpwJcFqGbCQ4BsigsQHfiQwU3Gp_DyDX8Ba_mlbw</recordid><startdate>20160504</startdate><enddate>20160504</enddate><creator>Nemecz, Ákos</creator><creator>Prevost, Marie S.</creator><creator>Menny, Anaïs</creator><creator>Corringer, Pierre-Jean</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5621-3708</orcidid><orcidid>https://orcid.org/0000-0002-6044-4119</orcidid></search><sort><creationdate>20160504</creationdate><title>Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels</title><author>Nemecz, Ákos ; Prevost, Marie S. ; Menny, Anaïs ; Corringer, Pierre-Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9d664b544aa728942e9bd87e09194b62349ed542af4308910553a982d49589ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Biophysical Phenomena - physiology</topic><topic>Cognitive science</topic><topic>Humans</topic><topic>Ion Channel Gating - physiology</topic><topic>Life Sciences</topic><topic>Ligand-Gated Ion Channels - metabolism</topic><topic>Ligands</topic><topic>Mammals</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Neuroscience</topic><topic>Neurotransmitters</topic><topic>Physiology</topic><topic>Receptors, Glycine - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemecz, Ákos</creatorcontrib><creatorcontrib>Prevost, Marie S.</creatorcontrib><creatorcontrib>Menny, Anaïs</creatorcontrib><creatorcontrib>Corringer, Pierre-Jean</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemecz, Ákos</au><au>Prevost, Marie S.</au><au>Menny, Anaïs</au><au>Corringer, Pierre-Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2016-05-04</date><risdate>2016</risdate><volume>90</volume><issue>3</issue><spage>452</spage><epage>470</epage><pages>452-470</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
In this Review, Corringer and colleagues summarize the recent structural data of pentameric ligand-gated ion channels, outlining the gating-transition mechanism, and correlate the plethora of functional data with the aim of classifying the structural conformations observed into the MWC model states.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27151638</pmid><doi>10.1016/j.neuron.2016.03.032</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5621-3708</orcidid><orcidid>https://orcid.org/0000-0002-6044-4119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2016-05, Vol.90 (3), p.452-470 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_pasteur_01721239v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals |
subjects | Alzheimer's disease Animals Biophysical Phenomena - physiology Cognitive science Humans Ion Channel Gating - physiology Life Sciences Ligand-Gated Ion Channels - metabolism Ligands Mammals Models, Molecular Mutation Neuroscience Neurotransmitters Physiology Receptors, Glycine - metabolism Signal transduction Signal Transduction - physiology |
title | Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T03%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20Molecular%20Mechanisms%20of%20Signal%20Transduction%20in%20Pentameric%20Ligand-Gated%20Ion%20Channels&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Nemecz,%20%C3%81kos&rft.date=2016-05-04&rft.volume=90&rft.issue=3&rft.spage=452&rft.epage=470&rft.pages=452-470&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2016.03.032&rft_dat=%3Cproquest_hal_p%3E1787478306%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787911038&rft_id=info:pmid/27151638&rft_els_id=S089662731630023X&rfr_iscdi=true |