Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels

Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2016-05, Vol.90 (3), p.452-470
Hauptverfasser: Nemecz, Ákos, Prevost, Marie S., Menny, Anaïs, Corringer, Pierre-Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 3
container_start_page 452
container_title Neuron (Cambridge, Mass.)
container_volume 90
creator Nemecz, Ákos
Prevost, Marie S.
Menny, Anaïs
Corringer, Pierre-Jean
description Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors. In this Review, Corringer and colleagues summarize the recent structural data of pentameric ligand-gated ion channels, outlining the gating-transition mechanism, and correlate the plethora of functional data with the aim of classifying the structural conformations observed into the MWC model states.
doi_str_mv 10.1016/j.neuron.2016.03.032
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_01721239v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731630023X</els_id><sourcerecordid>1787478306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9d664b544aa728942e9bd87e09194b62349ed542af4308910553a982d49589ff3</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-A5GAL32Zbf7NJHkRylLbwhYF65sQssmdbZaZZE1mCn57U6b2wYfChcslv3OTnIPQR0rWlNDu_LCOMOcU16xOa8JrsVdoRYmWjaBav0YronTXdEzyE_SulAMhVLSavkUnTNKWdlyt0K_LEfI-xD2-TQO4ebAZ34K7tzGUseDU4x9hH-2A77KNxc9uCiniEPF3iJOt2uDwNuxt9M2VncDjm3q8qfIIQ3mP3vR2KPDhqZ-in18v7zbXzfbb1c3mYtu4VpCp0b7rxK4VwlrJlBYM9M4rCURTLXYd40KDbwWzveD1S5S0LbdaMS90q3Tf81PULHvv7WCOOYw2_zHJBnN9sTVHW6ZqlCFUMsq4fqCVP1v4Y06_ZyiTGUNxMAw2QpqLoVJJIRUnXUU__4ce0pyrIQulKSVcVUoslMuplAz98ysoMY9pmYNZ0jKPaRnCa7Eq-_S0fN6N4J9F_-KpwJcFqGbCQ4BsigsQHfiQwU3Gp_DyDX8Ba_mlbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787911038</pqid></control><display><type>article</type><title>Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nemecz, Ákos ; Prevost, Marie S. ; Menny, Anaïs ; Corringer, Pierre-Jean</creator><creatorcontrib>Nemecz, Ákos ; Prevost, Marie S. ; Menny, Anaïs ; Corringer, Pierre-Jean</creatorcontrib><description>Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors. In this Review, Corringer and colleagues summarize the recent structural data of pentameric ligand-gated ion channels, outlining the gating-transition mechanism, and correlate the plethora of functional data with the aim of classifying the structural conformations observed into the MWC model states.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2016.03.032</identifier><identifier>PMID: 27151638</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alzheimer's disease ; Animals ; Biophysical Phenomena - physiology ; Cognitive science ; Humans ; Ion Channel Gating - physiology ; Life Sciences ; Ligand-Gated Ion Channels - metabolism ; Ligands ; Mammals ; Models, Molecular ; Mutation ; Neuroscience ; Neurotransmitters ; Physiology ; Receptors, Glycine - metabolism ; Signal transduction ; Signal Transduction - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2016-05, Vol.90 (3), p.452-470</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 4, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9d664b544aa728942e9bd87e09194b62349ed542af4308910553a982d49589ff3</citedby><cites>FETCH-LOGICAL-c540t-9d664b544aa728942e9bd87e09194b62349ed542af4308910553a982d49589ff3</cites><orcidid>0000-0001-5621-3708 ; 0000-0002-6044-4119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2016.03.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27151638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-01721239$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nemecz, Ákos</creatorcontrib><creatorcontrib>Prevost, Marie S.</creatorcontrib><creatorcontrib>Menny, Anaïs</creatorcontrib><creatorcontrib>Corringer, Pierre-Jean</creatorcontrib><title>Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors. In this Review, Corringer and colleagues summarize the recent structural data of pentameric ligand-gated ion channels, outlining the gating-transition mechanism, and correlate the plethora of functional data with the aim of classifying the structural conformations observed into the MWC model states.</description><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Biophysical Phenomena - physiology</subject><subject>Cognitive science</subject><subject>Humans</subject><subject>Ion Channel Gating - physiology</subject><subject>Life Sciences</subject><subject>Ligand-Gated Ion Channels - metabolism</subject><subject>Ligands</subject><subject>Mammals</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Neuroscience</subject><subject>Neurotransmitters</subject><subject>Physiology</subject><subject>Receptors, Glycine - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV9rFDEUxYModq1-A5GAL32Zbf7NJHkRylLbwhYF65sQssmdbZaZZE1mCn57U6b2wYfChcslv3OTnIPQR0rWlNDu_LCOMOcU16xOa8JrsVdoRYmWjaBav0YronTXdEzyE_SulAMhVLSavkUnTNKWdlyt0K_LEfI-xD2-TQO4ebAZ34K7tzGUseDU4x9hH-2A77KNxc9uCiniEPF3iJOt2uDwNuxt9M2VncDjm3q8qfIIQ3mP3vR2KPDhqZ-in18v7zbXzfbb1c3mYtu4VpCp0b7rxK4VwlrJlBYM9M4rCURTLXYd40KDbwWzveD1S5S0LbdaMS90q3Tf81PULHvv7WCOOYw2_zHJBnN9sTVHW6ZqlCFUMsq4fqCVP1v4Y06_ZyiTGUNxMAw2QpqLoVJJIRUnXUU__4ce0pyrIQulKSVcVUoslMuplAz98ysoMY9pmYNZ0jKPaRnCa7Eq-_S0fN6N4J9F_-KpwJcFqGbCQ4BsigsQHfiQwU3Gp_DyDX8Ba_mlbw</recordid><startdate>20160504</startdate><enddate>20160504</enddate><creator>Nemecz, Ákos</creator><creator>Prevost, Marie S.</creator><creator>Menny, Anaïs</creator><creator>Corringer, Pierre-Jean</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5621-3708</orcidid><orcidid>https://orcid.org/0000-0002-6044-4119</orcidid></search><sort><creationdate>20160504</creationdate><title>Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels</title><author>Nemecz, Ákos ; Prevost, Marie S. ; Menny, Anaïs ; Corringer, Pierre-Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9d664b544aa728942e9bd87e09194b62349ed542af4308910553a982d49589ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Biophysical Phenomena - physiology</topic><topic>Cognitive science</topic><topic>Humans</topic><topic>Ion Channel Gating - physiology</topic><topic>Life Sciences</topic><topic>Ligand-Gated Ion Channels - metabolism</topic><topic>Ligands</topic><topic>Mammals</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Neuroscience</topic><topic>Neurotransmitters</topic><topic>Physiology</topic><topic>Receptors, Glycine - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemecz, Ákos</creatorcontrib><creatorcontrib>Prevost, Marie S.</creatorcontrib><creatorcontrib>Menny, Anaïs</creatorcontrib><creatorcontrib>Corringer, Pierre-Jean</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemecz, Ákos</au><au>Prevost, Marie S.</au><au>Menny, Anaïs</au><au>Corringer, Pierre-Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2016-05-04</date><risdate>2016</risdate><volume>90</volume><issue>3</issue><spage>452</spage><epage>470</epage><pages>452-470</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors. In this Review, Corringer and colleagues summarize the recent structural data of pentameric ligand-gated ion channels, outlining the gating-transition mechanism, and correlate the plethora of functional data with the aim of classifying the structural conformations observed into the MWC model states.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27151638</pmid><doi>10.1016/j.neuron.2016.03.032</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5621-3708</orcidid><orcidid>https://orcid.org/0000-0002-6044-4119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2016-05, Vol.90 (3), p.452-470
issn 0896-6273
1097-4199
language eng
recordid cdi_hal_primary_oai_HAL_pasteur_01721239v1
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Alzheimer's disease
Animals
Biophysical Phenomena - physiology
Cognitive science
Humans
Ion Channel Gating - physiology
Life Sciences
Ligand-Gated Ion Channels - metabolism
Ligands
Mammals
Models, Molecular
Mutation
Neuroscience
Neurotransmitters
Physiology
Receptors, Glycine - metabolism
Signal transduction
Signal Transduction - physiology
title Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T03%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20Molecular%20Mechanisms%20of%20Signal%20Transduction%20in%20Pentameric%20Ligand-Gated%20Ion%20Channels&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Nemecz,%20%C3%81kos&rft.date=2016-05-04&rft.volume=90&rft.issue=3&rft.spage=452&rft.epage=470&rft.pages=452-470&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2016.03.032&rft_dat=%3Cproquest_hal_p%3E1787478306%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787911038&rft_id=info:pmid/27151638&rft_els_id=S089662731630023X&rfr_iscdi=true