Synchronous protein cycling in batch cultures of the yeast Saccharomyces cerevisiae at log growth phase

The assumption that cells are temporally organized systems, i.e. showing relevant dynamics of their state variables such as gene expression or protein and metabolite concentration, while tacitly given for granted at the molecular level, is not explicitly taken into account when interpreting biologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2011-12, Vol.317 (20), p.2958-2968
Hauptverfasser: Romagnoli, Gabriele, Cundari, Enrico, Negri, Rodolfo, Crescenzi, Marco, Farina, Lorenzo, Giuliani, Alessandro, Bianchi, Michele M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2968
container_issue 20
container_start_page 2958
container_title Experimental cell research
container_volume 317
creator Romagnoli, Gabriele
Cundari, Enrico
Negri, Rodolfo
Crescenzi, Marco
Farina, Lorenzo
Giuliani, Alessandro
Bianchi, Michele M.
description The assumption that cells are temporally organized systems, i.e. showing relevant dynamics of their state variables such as gene expression or protein and metabolite concentration, while tacitly given for granted at the molecular level, is not explicitly taken into account when interpreting biological experimental data. This conundrum stems from the (undemonstrated) assumption that a cell culture, the actual object of biological experimentation, is a population of billions of independent oscillators (cells) randomly experiencing different phases of their cycles and thus not producing relevant coordinated dynamics at the population level. Moreover the fact of considering reproductive cycle as by far the most important cyclic process in a cell resulted in lower attention given to other rhythmic processes. Here we demonstrate that growing yeast cells show a very repeatable and robust cyclic variation of the concentration of proteins with different cellular functions. We also report experimental evidence that the mechanism governing this basic oscillator and the cellular entrainment is resistant to external chemical constraints. Finally, cell growth is accompanied by cyclic dynamics of medium pH. These cycles are observed in batch cultures, different from the usual continuous cultures in which yeast metabolic cycles are known to occur, and suggest the existence of basic, spontaneous, collective and synchronous behaviors of the cell population as a whole.
doi_str_mv 10.1016/j.yexcr.2011.09.007
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_00978685v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482711003661</els_id><sourcerecordid>1028078885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-e63d8cac7589662f23451252bca047372859efb29c91cee9af097899a7dda1793</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEokvhEyAhiwtcEsbOH9sHDlUFFGklDoWz5Z1MNl5l48VOtuTb4-2WHjj0ZEv-ved587LsLYeCA28-7YqF_mAoBHBegC4A5LNsxUFDLiohnmcrAF7llRLyInsV4w4AlOLNy-xCcC2V5rDKtrfLiH3wo58jOwQ_kRsZLji4ccvSdWMn7BnOwzQHisx3bOqJLWTjxG4tYm-D3y-YnpACHV10lpid2OC3bBv83dSzQ28jvc5edHaI9ObhvMx-ff3y8_omX__49v36ap1jLcSUU1O2Ci3KWummEZ0oq5qLWmzQQiVLKVStqdsIjZojkbYdnJJoK9vWcqnLyyw_-_Z2MIfg9jYsxltnbq7W5pCmpjkYOIkaVR954j-c-ZT990xxMnsXkYbBjpRWYjRUwMtaNYn8-CTJQSiQSqk6oe__Q3d-DmPKfe8nUj1VgsozhMHHGKh7HJeDORVsdua-YHMq2IBOY8ukevdgPW_21D5q_jWagM9ngNKWj46CiehoRGpdIJxM692TH_wFDXy3jA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>904022424</pqid></control><display><type>article</type><title>Synchronous protein cycling in batch cultures of the yeast Saccharomyces cerevisiae at log growth phase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Romagnoli, Gabriele ; Cundari, Enrico ; Negri, Rodolfo ; Crescenzi, Marco ; Farina, Lorenzo ; Giuliani, Alessandro ; Bianchi, Michele M.</creator><creatorcontrib>Romagnoli, Gabriele ; Cundari, Enrico ; Negri, Rodolfo ; Crescenzi, Marco ; Farina, Lorenzo ; Giuliani, Alessandro ; Bianchi, Michele M.</creatorcontrib><description>The assumption that cells are temporally organized systems, i.e. showing relevant dynamics of their state variables such as gene expression or protein and metabolite concentration, while tacitly given for granted at the molecular level, is not explicitly taken into account when interpreting biological experimental data. This conundrum stems from the (undemonstrated) assumption that a cell culture, the actual object of biological experimentation, is a population of billions of independent oscillators (cells) randomly experiencing different phases of their cycles and thus not producing relevant coordinated dynamics at the population level. Moreover the fact of considering reproductive cycle as by far the most important cyclic process in a cell resulted in lower attention given to other rhythmic processes. Here we demonstrate that growing yeast cells show a very repeatable and robust cyclic variation of the concentration of proteins with different cellular functions. We also report experimental evidence that the mechanism governing this basic oscillator and the cellular entrainment is resistant to external chemical constraints. Finally, cell growth is accompanied by cyclic dynamics of medium pH. These cycles are observed in batch cultures, different from the usual continuous cultures in which yeast metabolic cycles are known to occur, and suggest the existence of basic, spontaneous, collective and synchronous behaviors of the cell population as a whole.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1016/j.yexcr.2011.09.007</identifier><identifier>PMID: 21978910</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacteria ; Batch Cell Culture Techniques ; Batch Cell Culture Techniques - methods ; Batch culture ; Batch processing ; Biochemistry, Molecular Biology ; Cell communication ; Cell culture ; Cell Cycle ; Cell Cycle - genetics ; Cell Proliferation ; Cells ; Continuous culture ; Cycloheximide ; Cycloheximide - pharmacology ; Data processing ; DNA Helicases ; DNA Helicases - metabolism ; Entrainment ; Expression ; Gene expression ; Hydrogen-Ion Concentration ; Life Sciences ; Metabolites ; Oscillators ; pH effects ; Population ; Population levels ; Proteins ; Reproductive status ; Rhythmic process ; Rhythms ; Ribosomal Proteins ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Vanadates ; Vanadates - metabolism ; Yeast</subject><ispartof>Experimental cell research, 2011-12, Vol.317 (20), p.2958-2968</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-e63d8cac7589662f23451252bca047372859efb29c91cee9af097899a7dda1793</citedby><cites>FETCH-LOGICAL-c522t-e63d8cac7589662f23451252bca047372859efb29c91cee9af097899a7dda1793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014482711003661$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21978910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://riip.hal.science/pasteur-00978685$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Romagnoli, Gabriele</creatorcontrib><creatorcontrib>Cundari, Enrico</creatorcontrib><creatorcontrib>Negri, Rodolfo</creatorcontrib><creatorcontrib>Crescenzi, Marco</creatorcontrib><creatorcontrib>Farina, Lorenzo</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Bianchi, Michele M.</creatorcontrib><title>Synchronous protein cycling in batch cultures of the yeast Saccharomyces cerevisiae at log growth phase</title><title>Experimental cell research</title><addtitle>Exp Cell Res</addtitle><description>The assumption that cells are temporally organized systems, i.e. showing relevant dynamics of their state variables such as gene expression or protein and metabolite concentration, while tacitly given for granted at the molecular level, is not explicitly taken into account when interpreting biological experimental data. This conundrum stems from the (undemonstrated) assumption that a cell culture, the actual object of biological experimentation, is a population of billions of independent oscillators (cells) randomly experiencing different phases of their cycles and thus not producing relevant coordinated dynamics at the population level. Moreover the fact of considering reproductive cycle as by far the most important cyclic process in a cell resulted in lower attention given to other rhythmic processes. Here we demonstrate that growing yeast cells show a very repeatable and robust cyclic variation of the concentration of proteins with different cellular functions. We also report experimental evidence that the mechanism governing this basic oscillator and the cellular entrainment is resistant to external chemical constraints. Finally, cell growth is accompanied by cyclic dynamics of medium pH. These cycles are observed in batch cultures, different from the usual continuous cultures in which yeast metabolic cycles are known to occur, and suggest the existence of basic, spontaneous, collective and synchronous behaviors of the cell population as a whole.</description><subject>Bacteria</subject><subject>Batch Cell Culture Techniques</subject><subject>Batch Cell Culture Techniques - methods</subject><subject>Batch culture</subject><subject>Batch processing</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell communication</subject><subject>Cell culture</subject><subject>Cell Cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Proliferation</subject><subject>Cells</subject><subject>Continuous culture</subject><subject>Cycloheximide</subject><subject>Cycloheximide - pharmacology</subject><subject>Data processing</subject><subject>DNA Helicases</subject><subject>DNA Helicases - metabolism</subject><subject>Entrainment</subject><subject>Expression</subject><subject>Gene expression</subject><subject>Hydrogen-Ion Concentration</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Oscillators</subject><subject>pH effects</subject><subject>Population</subject><subject>Population levels</subject><subject>Proteins</subject><subject>Reproductive status</subject><subject>Rhythmic process</subject><subject>Rhythms</subject><subject>Ribosomal Proteins</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Vanadates</subject><subject>Vanadates - metabolism</subject><subject>Yeast</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxSMEokvhEyAhiwtcEsbOH9sHDlUFFGklDoWz5Z1MNl5l48VOtuTb4-2WHjj0ZEv-ved587LsLYeCA28-7YqF_mAoBHBegC4A5LNsxUFDLiohnmcrAF7llRLyInsV4w4AlOLNy-xCcC2V5rDKtrfLiH3wo58jOwQ_kRsZLji4ccvSdWMn7BnOwzQHisx3bOqJLWTjxG4tYm-D3y-YnpACHV10lpid2OC3bBv83dSzQ28jvc5edHaI9ObhvMx-ff3y8_omX__49v36ap1jLcSUU1O2Ci3KWummEZ0oq5qLWmzQQiVLKVStqdsIjZojkbYdnJJoK9vWcqnLyyw_-_Z2MIfg9jYsxltnbq7W5pCmpjkYOIkaVR954j-c-ZT990xxMnsXkYbBjpRWYjRUwMtaNYn8-CTJQSiQSqk6oe__Q3d-DmPKfe8nUj1VgsozhMHHGKh7HJeDORVsdua-YHMq2IBOY8ukevdgPW_21D5q_jWagM9ngNKWj46CiehoRGpdIJxM692TH_wFDXy3jA</recordid><startdate>20111210</startdate><enddate>20111210</enddate><creator>Romagnoli, Gabriele</creator><creator>Cundari, Enrico</creator><creator>Negri, Rodolfo</creator><creator>Crescenzi, Marco</creator><creator>Farina, Lorenzo</creator><creator>Giuliani, Alessandro</creator><creator>Bianchi, Michele M.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20111210</creationdate><title>Synchronous protein cycling in batch cultures of the yeast Saccharomyces cerevisiae at log growth phase</title><author>Romagnoli, Gabriele ; Cundari, Enrico ; Negri, Rodolfo ; Crescenzi, Marco ; Farina, Lorenzo ; Giuliani, Alessandro ; Bianchi, Michele M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-e63d8cac7589662f23451252bca047372859efb29c91cee9af097899a7dda1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Batch Cell Culture Techniques</topic><topic>Batch Cell Culture Techniques - methods</topic><topic>Batch culture</topic><topic>Batch processing</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell communication</topic><topic>Cell culture</topic><topic>Cell Cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Proliferation</topic><topic>Cells</topic><topic>Continuous culture</topic><topic>Cycloheximide</topic><topic>Cycloheximide - pharmacology</topic><topic>Data processing</topic><topic>DNA Helicases</topic><topic>DNA Helicases - metabolism</topic><topic>Entrainment</topic><topic>Expression</topic><topic>Gene expression</topic><topic>Hydrogen-Ion Concentration</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Oscillators</topic><topic>pH effects</topic><topic>Population</topic><topic>Population levels</topic><topic>Proteins</topic><topic>Reproductive status</topic><topic>Rhythmic process</topic><topic>Rhythms</topic><topic>Ribosomal Proteins</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Vanadates</topic><topic>Vanadates - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romagnoli, Gabriele</creatorcontrib><creatorcontrib>Cundari, Enrico</creatorcontrib><creatorcontrib>Negri, Rodolfo</creatorcontrib><creatorcontrib>Crescenzi, Marco</creatorcontrib><creatorcontrib>Farina, Lorenzo</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Bianchi, Michele M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romagnoli, Gabriele</au><au>Cundari, Enrico</au><au>Negri, Rodolfo</au><au>Crescenzi, Marco</au><au>Farina, Lorenzo</au><au>Giuliani, Alessandro</au><au>Bianchi, Michele M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronous protein cycling in batch cultures of the yeast Saccharomyces cerevisiae at log growth phase</atitle><jtitle>Experimental cell research</jtitle><addtitle>Exp Cell Res</addtitle><date>2011-12-10</date><risdate>2011</risdate><volume>317</volume><issue>20</issue><spage>2958</spage><epage>2968</epage><pages>2958-2968</pages><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>The assumption that cells are temporally organized systems, i.e. showing relevant dynamics of their state variables such as gene expression or protein and metabolite concentration, while tacitly given for granted at the molecular level, is not explicitly taken into account when interpreting biological experimental data. This conundrum stems from the (undemonstrated) assumption that a cell culture, the actual object of biological experimentation, is a population of billions of independent oscillators (cells) randomly experiencing different phases of their cycles and thus not producing relevant coordinated dynamics at the population level. Moreover the fact of considering reproductive cycle as by far the most important cyclic process in a cell resulted in lower attention given to other rhythmic processes. Here we demonstrate that growing yeast cells show a very repeatable and robust cyclic variation of the concentration of proteins with different cellular functions. We also report experimental evidence that the mechanism governing this basic oscillator and the cellular entrainment is resistant to external chemical constraints. Finally, cell growth is accompanied by cyclic dynamics of medium pH. These cycles are observed in batch cultures, different from the usual continuous cultures in which yeast metabolic cycles are known to occur, and suggest the existence of basic, spontaneous, collective and synchronous behaviors of the cell population as a whole.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21978910</pmid><doi>10.1016/j.yexcr.2011.09.007</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4827
ispartof Experimental cell research, 2011-12, Vol.317 (20), p.2958-2968
issn 0014-4827
1090-2422
language eng
recordid cdi_hal_primary_oai_HAL_pasteur_00978685v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bacteria
Batch Cell Culture Techniques
Batch Cell Culture Techniques - methods
Batch culture
Batch processing
Biochemistry, Molecular Biology
Cell communication
Cell culture
Cell Cycle
Cell Cycle - genetics
Cell Proliferation
Cells
Continuous culture
Cycloheximide
Cycloheximide - pharmacology
Data processing
DNA Helicases
DNA Helicases - metabolism
Entrainment
Expression
Gene expression
Hydrogen-Ion Concentration
Life Sciences
Metabolites
Oscillators
pH effects
Population
Population levels
Proteins
Reproductive status
Rhythmic process
Rhythms
Ribosomal Proteins
Ribosomal Proteins - genetics
Ribosomal Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Vanadates
Vanadates - metabolism
Yeast
title Synchronous protein cycling in batch cultures of the yeast Saccharomyces cerevisiae at log growth phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronous%20protein%20cycling%20in%20batch%20cultures%20of%20the%20yeast%20Saccharomyces%20cerevisiae%20at%20log%20growth%20phase&rft.jtitle=Experimental%20cell%20research&rft.au=Romagnoli,%20Gabriele&rft.date=2011-12-10&rft.volume=317&rft.issue=20&rft.spage=2958&rft.epage=2968&rft.pages=2958-2968&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1016/j.yexcr.2011.09.007&rft_dat=%3Cproquest_hal_p%3E1028078885%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=904022424&rft_id=info:pmid/21978910&rft_els_id=S0014482711003661&rfr_iscdi=true