Acetylation controls Notch3 stability and function in T-cell leukemia

Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2012-08, Vol.31 (33), p.3807-3817
Hauptverfasser: Palermo, R, Checquolo, S, Giovenco, A, Grazioli, P, Kumar, V, Campese, A F, Giorgi, A, Napolitano, M, Canettieri, G, Ferrara, G, Schininà, M E, Maroder, M, Frati, L, Gulino, A, Vacca, A, Screpanti, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3817
container_issue 33
container_start_page 3807
container_title Oncogene
container_volume 31
creator Palermo, R
Checquolo, S
Giovenco, A
Grazioli, P
Kumar, V
Campese, A F
Giorgi, A
Napolitano, M
Canettieri, G
Ferrara, G
Schininà, M E
Maroder, M
Frati, L
Gulino, A
Vacca, A
Screpanti, I
description Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R 1692−1731 mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R 1692−1731 mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.
doi_str_mv 10.1038/onc.2011.533
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_00947754v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A301556075</galeid><sourcerecordid>A301556075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-db5ad1fb331e5e19a449355f9b1b90f31da06a994a59879b1c34ffc81434cd403</originalsourceid><addsrcrecordid>eNqNksFvFCEUxonR2LV682wm8eLBWR8DDMNx01RrstFLPROGgZbKwgpMk_3vZbu1tU1jDAcS-L3H-z4-hN5iWGIgw6cY9LIDjJeMkGdogSnvW8YEfY4WIBi0oiPdEXqV8xUAcAHdS3TUdbgDjvsFOl1pU3ZeFRdDo2MoKfrcfItFX5ImFzU678quUWFq7Bz0DeZCc95q433jzfzTbJx6jV5Y5bN5c7sfox-fT89Pztr19y9fT1brVrOOlHYamZqwHQnBhhksFKWCMGbFiEcBluBJQa-EoIqJgddTTai1esCUUD1RIMeoPfS9VF5uk9uotJNROXm2WsutysXMSQIIyjmj17jyHw78NsVfs8lFblzeT66CiXOWewP7aooY_gelWHDOaUXfP0Kv4pxCFS67nmIGnNDhX1TtVWXTXvT31IXyRrpgY0lK75-WKwKYsToeq9TyCaquqbpff81YV88fFHw8FOgUc07G3rmF4Ua1rLGR-9jIGpuKv7uddR43ZrqD_-Tk3vhcr8KFSX-LeaLhb12SxyI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033554696</pqid></control><display><type>article</type><title>Acetylation controls Notch3 stability and function in T-cell leukemia</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Palermo, R ; Checquolo, S ; Giovenco, A ; Grazioli, P ; Kumar, V ; Campese, A F ; Giorgi, A ; Napolitano, M ; Canettieri, G ; Ferrara, G ; Schininà, M E ; Maroder, M ; Frati, L ; Gulino, A ; Vacca, A ; Screpanti, I</creator><creatorcontrib>Palermo, R ; Checquolo, S ; Giovenco, A ; Grazioli, P ; Kumar, V ; Campese, A F ; Giorgi, A ; Napolitano, M ; Canettieri, G ; Ferrara, G ; Schininà, M E ; Maroder, M ; Frati, L ; Gulino, A ; Vacca, A ; Screpanti, I</creatorcontrib><description>Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R 1692−1731 mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R 1692−1731 mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2011.533</identifier><identifier>PMID: 22120716</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/458/1275 ; 631/80/86 ; 692/699/67/1990/283/2125 ; Acetylation ; Acute lymphatic leukemia ; Acute lymphoblastic leukemia ; Animals ; Apoptosis ; Cancer ; Care and treatment ; Cell Biology ; Cell proliferation ; Chemotherapy ; Deacetylation ; Development and progression ; Enzymes ; Genetic aspects ; HEK293 Cells ; Histone deacetylase ; Histone Deacetylase Inhibitors ; Histone Deacetylase Inhibitors - therapeutic use ; Human Genetics ; Humans ; Internal Medicine ; Leukemia ; Leukemia, T-Cell ; Leukemia, T-Cell - drug therapy ; Leukemia, T-Cell - etiology ; Life Sciences ; Lymphatic leukemia ; Lymphocyte Activation ; Lymphocytes T ; Lymphoma ; Lysine ; Medicine ; Medicine &amp; Public Health ; Mice ; Mutants ; Mutation ; Notch protein ; Notch3 protein ; Oncology ; original-article ; Post-translation ; Proteasome Endopeptidase Complex ; Proteasome Endopeptidase Complex - physiology ; Proteasomes ; Proteins ; Receptor, Notch3 ; Receptors, Notch ; Receptors, Notch - physiology ; T cell receptors ; T cells ; T-Lymphocytes ; T-Lymphocytes - immunology ; Transcription ; Transgenic mice ; Ubiquitination</subject><ispartof>Oncogene, 2012-08, Vol.31 (33), p.3807-3817</ispartof><rights>Macmillan Publishers Limited 2012</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 16, 2012</rights><rights>Macmillan Publishers Limited 2012.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-db5ad1fb331e5e19a449355f9b1b90f31da06a994a59879b1c34ffc81434cd403</citedby><cites>FETCH-LOGICAL-c523t-db5ad1fb331e5e19a449355f9b1b90f31da06a994a59879b1c34ffc81434cd403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22120716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://riip.hal.science/pasteur-00947754$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Palermo, R</creatorcontrib><creatorcontrib>Checquolo, S</creatorcontrib><creatorcontrib>Giovenco, A</creatorcontrib><creatorcontrib>Grazioli, P</creatorcontrib><creatorcontrib>Kumar, V</creatorcontrib><creatorcontrib>Campese, A F</creatorcontrib><creatorcontrib>Giorgi, A</creatorcontrib><creatorcontrib>Napolitano, M</creatorcontrib><creatorcontrib>Canettieri, G</creatorcontrib><creatorcontrib>Ferrara, G</creatorcontrib><creatorcontrib>Schininà, M E</creatorcontrib><creatorcontrib>Maroder, M</creatorcontrib><creatorcontrib>Frati, L</creatorcontrib><creatorcontrib>Gulino, A</creatorcontrib><creatorcontrib>Vacca, A</creatorcontrib><creatorcontrib>Screpanti, I</creatorcontrib><title>Acetylation controls Notch3 stability and function in T-cell leukemia</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R 1692−1731 mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R 1692−1731 mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.</description><subject>631/80/458/1275</subject><subject>631/80/86</subject><subject>692/699/67/1990/283/2125</subject><subject>Acetylation</subject><subject>Acute lymphatic leukemia</subject><subject>Acute lymphoblastic leukemia</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell proliferation</subject><subject>Chemotherapy</subject><subject>Deacetylation</subject><subject>Development and progression</subject><subject>Enzymes</subject><subject>Genetic aspects</subject><subject>HEK293 Cells</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylase Inhibitors</subject><subject>Histone Deacetylase Inhibitors - therapeutic use</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Leukemia, T-Cell</subject><subject>Leukemia, T-Cell - drug therapy</subject><subject>Leukemia, T-Cell - etiology</subject><subject>Life Sciences</subject><subject>Lymphatic leukemia</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>Lysine</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Notch protein</subject><subject>Notch3 protein</subject><subject>Oncology</subject><subject>original-article</subject><subject>Post-translation</subject><subject>Proteasome Endopeptidase Complex</subject><subject>Proteasome Endopeptidase Complex - physiology</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Receptor, Notch3</subject><subject>Receptors, Notch</subject><subject>Receptors, Notch - physiology</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>T-Lymphocytes</subject><subject>T-Lymphocytes - immunology</subject><subject>Transcription</subject><subject>Transgenic mice</subject><subject>Ubiquitination</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNksFvFCEUxonR2LV682wm8eLBWR8DDMNx01RrstFLPROGgZbKwgpMk_3vZbu1tU1jDAcS-L3H-z4-hN5iWGIgw6cY9LIDjJeMkGdogSnvW8YEfY4WIBi0oiPdEXqV8xUAcAHdS3TUdbgDjvsFOl1pU3ZeFRdDo2MoKfrcfItFX5ImFzU678quUWFq7Bz0DeZCc95q433jzfzTbJx6jV5Y5bN5c7sfox-fT89Pztr19y9fT1brVrOOlHYamZqwHQnBhhksFKWCMGbFiEcBluBJQa-EoIqJgddTTai1esCUUD1RIMeoPfS9VF5uk9uotJNROXm2WsutysXMSQIIyjmj17jyHw78NsVfs8lFblzeT66CiXOWewP7aooY_gelWHDOaUXfP0Kv4pxCFS67nmIGnNDhX1TtVWXTXvT31IXyRrpgY0lK75-WKwKYsToeq9TyCaquqbpff81YV88fFHw8FOgUc07G3rmF4Ua1rLGR-9jIGpuKv7uddR43ZrqD_-Tk3vhcr8KFSX-LeaLhb12SxyI</recordid><startdate>20120816</startdate><enddate>20120816</enddate><creator>Palermo, R</creator><creator>Checquolo, S</creator><creator>Giovenco, A</creator><creator>Grazioli, P</creator><creator>Kumar, V</creator><creator>Campese, A F</creator><creator>Giorgi, A</creator><creator>Napolitano, M</creator><creator>Canettieri, G</creator><creator>Ferrara, G</creator><creator>Schininà, M E</creator><creator>Maroder, M</creator><creator>Frati, L</creator><creator>Gulino, A</creator><creator>Vacca, A</creator><creator>Screpanti, I</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [1987-....]</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20120816</creationdate><title>Acetylation controls Notch3 stability and function in T-cell leukemia</title><author>Palermo, R ; Checquolo, S ; Giovenco, A ; Grazioli, P ; Kumar, V ; Campese, A F ; Giorgi, A ; Napolitano, M ; Canettieri, G ; Ferrara, G ; Schininà, M E ; Maroder, M ; Frati, L ; Gulino, A ; Vacca, A ; Screpanti, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-db5ad1fb331e5e19a449355f9b1b90f31da06a994a59879b1c34ffc81434cd403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/80/458/1275</topic><topic>631/80/86</topic><topic>692/699/67/1990/283/2125</topic><topic>Acetylation</topic><topic>Acute lymphatic leukemia</topic><topic>Acute lymphoblastic leukemia</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell proliferation</topic><topic>Chemotherapy</topic><topic>Deacetylation</topic><topic>Development and progression</topic><topic>Enzymes</topic><topic>Genetic aspects</topic><topic>HEK293 Cells</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylase Inhibitors</topic><topic>Histone Deacetylase Inhibitors - therapeutic use</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Leukemia, T-Cell</topic><topic>Leukemia, T-Cell - drug therapy</topic><topic>Leukemia, T-Cell - etiology</topic><topic>Life Sciences</topic><topic>Lymphatic leukemia</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>Lysine</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Notch protein</topic><topic>Notch3 protein</topic><topic>Oncology</topic><topic>original-article</topic><topic>Post-translation</topic><topic>Proteasome Endopeptidase Complex</topic><topic>Proteasome Endopeptidase Complex - physiology</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Receptor, Notch3</topic><topic>Receptors, Notch</topic><topic>Receptors, Notch - physiology</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>T-Lymphocytes</topic><topic>T-Lymphocytes - immunology</topic><topic>Transcription</topic><topic>Transgenic mice</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palermo, R</creatorcontrib><creatorcontrib>Checquolo, S</creatorcontrib><creatorcontrib>Giovenco, A</creatorcontrib><creatorcontrib>Grazioli, P</creatorcontrib><creatorcontrib>Kumar, V</creatorcontrib><creatorcontrib>Campese, A F</creatorcontrib><creatorcontrib>Giorgi, A</creatorcontrib><creatorcontrib>Napolitano, M</creatorcontrib><creatorcontrib>Canettieri, G</creatorcontrib><creatorcontrib>Ferrara, G</creatorcontrib><creatorcontrib>Schininà, M E</creatorcontrib><creatorcontrib>Maroder, M</creatorcontrib><creatorcontrib>Frati, L</creatorcontrib><creatorcontrib>Gulino, A</creatorcontrib><creatorcontrib>Vacca, A</creatorcontrib><creatorcontrib>Screpanti, I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palermo, R</au><au>Checquolo, S</au><au>Giovenco, A</au><au>Grazioli, P</au><au>Kumar, V</au><au>Campese, A F</au><au>Giorgi, A</au><au>Napolitano, M</au><au>Canettieri, G</au><au>Ferrara, G</au><au>Schininà, M E</au><au>Maroder, M</au><au>Frati, L</au><au>Gulino, A</au><au>Vacca, A</au><au>Screpanti, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetylation controls Notch3 stability and function in T-cell leukemia</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2012-08-16</date><risdate>2012</risdate><volume>31</volume><issue>33</issue><spage>3807</spage><epage>3817</epage><pages>3807-3817</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R 1692−1731 mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R 1692−1731 mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22120716</pmid><doi>10.1038/onc.2011.533</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2012-08, Vol.31 (33), p.3807-3817
issn 0950-9232
1476-5594
language eng
recordid cdi_hal_primary_oai_HAL_pasteur_00947754v1
source MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 631/80/458/1275
631/80/86
692/699/67/1990/283/2125
Acetylation
Acute lymphatic leukemia
Acute lymphoblastic leukemia
Animals
Apoptosis
Cancer
Care and treatment
Cell Biology
Cell proliferation
Chemotherapy
Deacetylation
Development and progression
Enzymes
Genetic aspects
HEK293 Cells
Histone deacetylase
Histone Deacetylase Inhibitors
Histone Deacetylase Inhibitors - therapeutic use
Human Genetics
Humans
Internal Medicine
Leukemia
Leukemia, T-Cell
Leukemia, T-Cell - drug therapy
Leukemia, T-Cell - etiology
Life Sciences
Lymphatic leukemia
Lymphocyte Activation
Lymphocytes T
Lymphoma
Lysine
Medicine
Medicine & Public Health
Mice
Mutants
Mutation
Notch protein
Notch3 protein
Oncology
original-article
Post-translation
Proteasome Endopeptidase Complex
Proteasome Endopeptidase Complex - physiology
Proteasomes
Proteins
Receptor, Notch3
Receptors, Notch
Receptors, Notch - physiology
T cell receptors
T cells
T-Lymphocytes
T-Lymphocytes - immunology
Transcription
Transgenic mice
Ubiquitination
title Acetylation controls Notch3 stability and function in T-cell leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetylation%20controls%20Notch3%20stability%20and%20function%20in%20T-cell%20leukemia&rft.jtitle=Oncogene&rft.au=Palermo,%20R&rft.date=2012-08-16&rft.volume=31&rft.issue=33&rft.spage=3807&rft.epage=3817&rft.pages=3807-3817&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2011.533&rft_dat=%3Cgale_hal_p%3EA301556075%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033554696&rft_id=info:pmid/22120716&rft_galeid=A301556075&rfr_iscdi=true