Acetylation controls Notch3 stability and function in T-cell leukemia
Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively...
Gespeichert in:
Veröffentlicht in: | Oncogene 2012-08, Vol.31 (33), p.3807-3817 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3817 |
---|---|
container_issue | 33 |
container_start_page | 3807 |
container_title | Oncogene |
container_volume | 31 |
creator | Palermo, R Checquolo, S Giovenco, A Grazioli, P Kumar, V Campese, A F Giorgi, A Napolitano, M Canettieri, G Ferrara, G Schininà, M E Maroder, M Frati, L Gulino, A Vacca, A Screpanti, I |
description | Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R
1692−1731
mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both
in vitro
and
in vivo
in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R
1692−1731
mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents
in vivo
growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy. |
doi_str_mv | 10.1038/onc.2011.533 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_00947754v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A301556075</galeid><sourcerecordid>A301556075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-db5ad1fb331e5e19a449355f9b1b90f31da06a994a59879b1c34ffc81434cd403</originalsourceid><addsrcrecordid>eNqNksFvFCEUxonR2LV682wm8eLBWR8DDMNx01RrstFLPROGgZbKwgpMk_3vZbu1tU1jDAcS-L3H-z4-hN5iWGIgw6cY9LIDjJeMkGdogSnvW8YEfY4WIBi0oiPdEXqV8xUAcAHdS3TUdbgDjvsFOl1pU3ZeFRdDo2MoKfrcfItFX5ImFzU678quUWFq7Bz0DeZCc95q433jzfzTbJx6jV5Y5bN5c7sfox-fT89Pztr19y9fT1brVrOOlHYamZqwHQnBhhksFKWCMGbFiEcBluBJQa-EoIqJgddTTai1esCUUD1RIMeoPfS9VF5uk9uotJNROXm2WsutysXMSQIIyjmj17jyHw78NsVfs8lFblzeT66CiXOWewP7aooY_gelWHDOaUXfP0Kv4pxCFS67nmIGnNDhX1TtVWXTXvT31IXyRrpgY0lK75-WKwKYsToeq9TyCaquqbpff81YV88fFHw8FOgUc07G3rmF4Ua1rLGR-9jIGpuKv7uddR43ZrqD_-Tk3vhcr8KFSX-LeaLhb12SxyI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033554696</pqid></control><display><type>article</type><title>Acetylation controls Notch3 stability and function in T-cell leukemia</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Palermo, R ; Checquolo, S ; Giovenco, A ; Grazioli, P ; Kumar, V ; Campese, A F ; Giorgi, A ; Napolitano, M ; Canettieri, G ; Ferrara, G ; Schininà, M E ; Maroder, M ; Frati, L ; Gulino, A ; Vacca, A ; Screpanti, I</creator><creatorcontrib>Palermo, R ; Checquolo, S ; Giovenco, A ; Grazioli, P ; Kumar, V ; Campese, A F ; Giorgi, A ; Napolitano, M ; Canettieri, G ; Ferrara, G ; Schininà, M E ; Maroder, M ; Frati, L ; Gulino, A ; Vacca, A ; Screpanti, I</creatorcontrib><description>Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R
1692−1731
mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both
in vitro
and
in vivo
in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R
1692−1731
mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents
in vivo
growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2011.533</identifier><identifier>PMID: 22120716</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/458/1275 ; 631/80/86 ; 692/699/67/1990/283/2125 ; Acetylation ; Acute lymphatic leukemia ; Acute lymphoblastic leukemia ; Animals ; Apoptosis ; Cancer ; Care and treatment ; Cell Biology ; Cell proliferation ; Chemotherapy ; Deacetylation ; Development and progression ; Enzymes ; Genetic aspects ; HEK293 Cells ; Histone deacetylase ; Histone Deacetylase Inhibitors ; Histone Deacetylase Inhibitors - therapeutic use ; Human Genetics ; Humans ; Internal Medicine ; Leukemia ; Leukemia, T-Cell ; Leukemia, T-Cell - drug therapy ; Leukemia, T-Cell - etiology ; Life Sciences ; Lymphatic leukemia ; Lymphocyte Activation ; Lymphocytes T ; Lymphoma ; Lysine ; Medicine ; Medicine & Public Health ; Mice ; Mutants ; Mutation ; Notch protein ; Notch3 protein ; Oncology ; original-article ; Post-translation ; Proteasome Endopeptidase Complex ; Proteasome Endopeptidase Complex - physiology ; Proteasomes ; Proteins ; Receptor, Notch3 ; Receptors, Notch ; Receptors, Notch - physiology ; T cell receptors ; T cells ; T-Lymphocytes ; T-Lymphocytes - immunology ; Transcription ; Transgenic mice ; Ubiquitination</subject><ispartof>Oncogene, 2012-08, Vol.31 (33), p.3807-3817</ispartof><rights>Macmillan Publishers Limited 2012</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 16, 2012</rights><rights>Macmillan Publishers Limited 2012.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-db5ad1fb331e5e19a449355f9b1b90f31da06a994a59879b1c34ffc81434cd403</citedby><cites>FETCH-LOGICAL-c523t-db5ad1fb331e5e19a449355f9b1b90f31da06a994a59879b1c34ffc81434cd403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22120716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://riip.hal.science/pasteur-00947754$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Palermo, R</creatorcontrib><creatorcontrib>Checquolo, S</creatorcontrib><creatorcontrib>Giovenco, A</creatorcontrib><creatorcontrib>Grazioli, P</creatorcontrib><creatorcontrib>Kumar, V</creatorcontrib><creatorcontrib>Campese, A F</creatorcontrib><creatorcontrib>Giorgi, A</creatorcontrib><creatorcontrib>Napolitano, M</creatorcontrib><creatorcontrib>Canettieri, G</creatorcontrib><creatorcontrib>Ferrara, G</creatorcontrib><creatorcontrib>Schininà, M E</creatorcontrib><creatorcontrib>Maroder, M</creatorcontrib><creatorcontrib>Frati, L</creatorcontrib><creatorcontrib>Gulino, A</creatorcontrib><creatorcontrib>Vacca, A</creatorcontrib><creatorcontrib>Screpanti, I</creatorcontrib><title>Acetylation controls Notch3 stability and function in T-cell leukemia</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R
1692−1731
mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both
in vitro
and
in vivo
in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R
1692−1731
mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents
in vivo
growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.</description><subject>631/80/458/1275</subject><subject>631/80/86</subject><subject>692/699/67/1990/283/2125</subject><subject>Acetylation</subject><subject>Acute lymphatic leukemia</subject><subject>Acute lymphoblastic leukemia</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell proliferation</subject><subject>Chemotherapy</subject><subject>Deacetylation</subject><subject>Development and progression</subject><subject>Enzymes</subject><subject>Genetic aspects</subject><subject>HEK293 Cells</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylase Inhibitors</subject><subject>Histone Deacetylase Inhibitors - therapeutic use</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Leukemia, T-Cell</subject><subject>Leukemia, T-Cell - drug therapy</subject><subject>Leukemia, T-Cell - etiology</subject><subject>Life Sciences</subject><subject>Lymphatic leukemia</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>Lysine</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Notch protein</subject><subject>Notch3 protein</subject><subject>Oncology</subject><subject>original-article</subject><subject>Post-translation</subject><subject>Proteasome Endopeptidase Complex</subject><subject>Proteasome Endopeptidase Complex - physiology</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Receptor, Notch3</subject><subject>Receptors, Notch</subject><subject>Receptors, Notch - physiology</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>T-Lymphocytes</subject><subject>T-Lymphocytes - immunology</subject><subject>Transcription</subject><subject>Transgenic mice</subject><subject>Ubiquitination</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNksFvFCEUxonR2LV682wm8eLBWR8DDMNx01RrstFLPROGgZbKwgpMk_3vZbu1tU1jDAcS-L3H-z4-hN5iWGIgw6cY9LIDjJeMkGdogSnvW8YEfY4WIBi0oiPdEXqV8xUAcAHdS3TUdbgDjvsFOl1pU3ZeFRdDo2MoKfrcfItFX5ImFzU678quUWFq7Bz0DeZCc95q433jzfzTbJx6jV5Y5bN5c7sfox-fT89Pztr19y9fT1brVrOOlHYamZqwHQnBhhksFKWCMGbFiEcBluBJQa-EoIqJgddTTai1esCUUD1RIMeoPfS9VF5uk9uotJNROXm2WsutysXMSQIIyjmj17jyHw78NsVfs8lFblzeT66CiXOWewP7aooY_gelWHDOaUXfP0Kv4pxCFS67nmIGnNDhX1TtVWXTXvT31IXyRrpgY0lK75-WKwKYsToeq9TyCaquqbpff81YV88fFHw8FOgUc07G3rmF4Ua1rLGR-9jIGpuKv7uddR43ZrqD_-Tk3vhcr8KFSX-LeaLhb12SxyI</recordid><startdate>20120816</startdate><enddate>20120816</enddate><creator>Palermo, R</creator><creator>Checquolo, S</creator><creator>Giovenco, A</creator><creator>Grazioli, P</creator><creator>Kumar, V</creator><creator>Campese, A F</creator><creator>Giorgi, A</creator><creator>Napolitano, M</creator><creator>Canettieri, G</creator><creator>Ferrara, G</creator><creator>Schininà, M E</creator><creator>Maroder, M</creator><creator>Frati, L</creator><creator>Gulino, A</creator><creator>Vacca, A</creator><creator>Screpanti, I</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [1987-....]</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20120816</creationdate><title>Acetylation controls Notch3 stability and function in T-cell leukemia</title><author>Palermo, R ; Checquolo, S ; Giovenco, A ; Grazioli, P ; Kumar, V ; Campese, A F ; Giorgi, A ; Napolitano, M ; Canettieri, G ; Ferrara, G ; Schininà, M E ; Maroder, M ; Frati, L ; Gulino, A ; Vacca, A ; Screpanti, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-db5ad1fb331e5e19a449355f9b1b90f31da06a994a59879b1c34ffc81434cd403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/80/458/1275</topic><topic>631/80/86</topic><topic>692/699/67/1990/283/2125</topic><topic>Acetylation</topic><topic>Acute lymphatic leukemia</topic><topic>Acute lymphoblastic leukemia</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell proliferation</topic><topic>Chemotherapy</topic><topic>Deacetylation</topic><topic>Development and progression</topic><topic>Enzymes</topic><topic>Genetic aspects</topic><topic>HEK293 Cells</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylase Inhibitors</topic><topic>Histone Deacetylase Inhibitors - therapeutic use</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Leukemia, T-Cell</topic><topic>Leukemia, T-Cell - drug therapy</topic><topic>Leukemia, T-Cell - etiology</topic><topic>Life Sciences</topic><topic>Lymphatic leukemia</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>Lysine</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Notch protein</topic><topic>Notch3 protein</topic><topic>Oncology</topic><topic>original-article</topic><topic>Post-translation</topic><topic>Proteasome Endopeptidase Complex</topic><topic>Proteasome Endopeptidase Complex - physiology</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Receptor, Notch3</topic><topic>Receptors, Notch</topic><topic>Receptors, Notch - physiology</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>T-Lymphocytes</topic><topic>T-Lymphocytes - immunology</topic><topic>Transcription</topic><topic>Transgenic mice</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palermo, R</creatorcontrib><creatorcontrib>Checquolo, S</creatorcontrib><creatorcontrib>Giovenco, A</creatorcontrib><creatorcontrib>Grazioli, P</creatorcontrib><creatorcontrib>Kumar, V</creatorcontrib><creatorcontrib>Campese, A F</creatorcontrib><creatorcontrib>Giorgi, A</creatorcontrib><creatorcontrib>Napolitano, M</creatorcontrib><creatorcontrib>Canettieri, G</creatorcontrib><creatorcontrib>Ferrara, G</creatorcontrib><creatorcontrib>Schininà, M E</creatorcontrib><creatorcontrib>Maroder, M</creatorcontrib><creatorcontrib>Frati, L</creatorcontrib><creatorcontrib>Gulino, A</creatorcontrib><creatorcontrib>Vacca, A</creatorcontrib><creatorcontrib>Screpanti, I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palermo, R</au><au>Checquolo, S</au><au>Giovenco, A</au><au>Grazioli, P</au><au>Kumar, V</au><au>Campese, A F</au><au>Giorgi, A</au><au>Napolitano, M</au><au>Canettieri, G</au><au>Ferrara, G</au><au>Schininà, M E</au><au>Maroder, M</au><au>Frati, L</au><au>Gulino, A</au><au>Vacca, A</au><au>Screpanti, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetylation controls Notch3 stability and function in T-cell leukemia</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2012-08-16</date><risdate>2012</risdate><volume>31</volume><issue>33</issue><spage>3807</spage><epage>3817</epage><pages>3807-3817</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R
1692−1731
mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both
in vitro
and
in vivo
in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R
1692−1731
mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents
in vivo
growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22120716</pmid><doi>10.1038/onc.2011.533</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2012-08, Vol.31 (33), p.3807-3817 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_pasteur_00947754v1 |
source | MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | 631/80/458/1275 631/80/86 692/699/67/1990/283/2125 Acetylation Acute lymphatic leukemia Acute lymphoblastic leukemia Animals Apoptosis Cancer Care and treatment Cell Biology Cell proliferation Chemotherapy Deacetylation Development and progression Enzymes Genetic aspects HEK293 Cells Histone deacetylase Histone Deacetylase Inhibitors Histone Deacetylase Inhibitors - therapeutic use Human Genetics Humans Internal Medicine Leukemia Leukemia, T-Cell Leukemia, T-Cell - drug therapy Leukemia, T-Cell - etiology Life Sciences Lymphatic leukemia Lymphocyte Activation Lymphocytes T Lymphoma Lysine Medicine Medicine & Public Health Mice Mutants Mutation Notch protein Notch3 protein Oncology original-article Post-translation Proteasome Endopeptidase Complex Proteasome Endopeptidase Complex - physiology Proteasomes Proteins Receptor, Notch3 Receptors, Notch Receptors, Notch - physiology T cell receptors T cells T-Lymphocytes T-Lymphocytes - immunology Transcription Transgenic mice Ubiquitination |
title | Acetylation controls Notch3 stability and function in T-cell leukemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetylation%20controls%20Notch3%20stability%20and%20function%20in%20T-cell%20leukemia&rft.jtitle=Oncogene&rft.au=Palermo,%20R&rft.date=2012-08-16&rft.volume=31&rft.issue=33&rft.spage=3807&rft.epage=3817&rft.pages=3807-3817&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2011.533&rft_dat=%3Cgale_hal_p%3EA301556075%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033554696&rft_id=info:pmid/22120716&rft_galeid=A301556075&rfr_iscdi=true |