Impact of an Aerobic Thermophilic Sequencing Batch Reactor on Antibiotic-Resistant Anaerobic Bacteria in Swine Waste

The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on anaerobic antibiotic-resistant bacteria in swine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2009-11, Vol.58 (4), p.773-785
Hauptverfasser: Chénier, Martin R, Juteau, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 785
container_issue 4
container_start_page 773
container_title Microbial ecology
container_volume 58
creator Chénier, Martin R
Juteau, Pierre
description The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on anaerobic antibiotic-resistant bacteria in swine waste. Despite 162- to 6,166-fold reduction in antibiotic-resistant populations enumerated in the swine waste at 25°C and 37°C, resistant populations remained significant (10⁴ to 10⁵ most probable number per milliliter) in the treated swine waste. Five resistance genes were detected before [tet(LMOS) erm(B)], and six resistance genes were detected after [tet(LMOSY) erm(B)] biotreatment. However, the biotreatment decreased the frequency of detection of resistance genes by 57%. Analysis by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16 S ribosomal DNA (rDNA) fragments showed that the biotreatment reduced the bacterial diversity of resistant populations enumerated at 37°C. Cloning and sequencing of the 16 S rDNA of these populations revealed that most clones in the treated swine waste were closely similar to some of the clones retrieved from the untreated swine waste. This study revealed that the aerobic thermophilic biotreatment developed in our laboratory does not prevent the introduction of facultatively anaerobic antibiotic-resistant bacteria and their resistance genes into agricultural ecosystems. Horizontal transfer of ecologically advantageous genes within microbial communities are likely to prevent thermophilic biotreatments from completely eliminating antibiotic-resistant bacteria and their resistance genes in animal wastes.
doi_str_mv 10.1007/s00248-009-9546-4
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_00819954v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27770568</jstor_id><sourcerecordid>27770568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-6afc43c884c78aed14b7c7a668ccb696926e0b7b8f01ec51bbab8de875f526693</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhUcIREPhB7AARmxYGa4f48cyrYBWioTUtIKdZTuexNHMONgzIP49DhO1EouuLPt-5_jee6rqNYaPGEB8ygCESQSgkGoYR-xJtcCMEoQl-_G0WpRCgygn8qx6kfMeAAtO6PPqDKuGE8LEohqv-4NxYx3b2gz10qdog6tvdz718bALXbms_c_JDy4M2_rCjG5X3_iiiKmORTCMwYY4BodufA55NMNYHs3J56KAPgVTh6Fe_w6Dr7-bPPqX1bPWdNm_Op3n1d2Xz7eXV2j17ev15XKFHJN8RNy0jlEnJXNCGr_BzAonDOfSOcsVV4R7sMLKFrB3DbbWWLnxUjRtQzhX9LxCs-_OdPqQQm_SHx1N0FfLlT4cO5mSBpBYlfX9woX_MPOHFMvMedR9yM53nRl8nLJWwJii-J_z46SglAOjDSnk-__IfZzSUMbWBAPDAnNWIDxDLsWck2_vu8Wgj1HrOerSrNLHqPVR8_ZkPNnebx4Up2wLQGYgl9Kw9enh58dc38yifS4R35sSIQQ0XJb6u7nemqjNNoWs79YEMIWyFkUk0L-6asY9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210417164</pqid></control><display><type>article</type><title>Impact of an Aerobic Thermophilic Sequencing Batch Reactor on Antibiotic-Resistant Anaerobic Bacteria in Swine Waste</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Chénier, Martin R ; Juteau, Pierre</creator><creatorcontrib>Chénier, Martin R ; Juteau, Pierre</creatorcontrib><description>The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on anaerobic antibiotic-resistant bacteria in swine waste. Despite 162- to 6,166-fold reduction in antibiotic-resistant populations enumerated in the swine waste at 25°C and 37°C, resistant populations remained significant (10⁴ to 10⁵ most probable number per milliliter) in the treated swine waste. Five resistance genes were detected before [tet(LMOS) erm(B)], and six resistance genes were detected after [tet(LMOSY) erm(B)] biotreatment. However, the biotreatment decreased the frequency of detection of resistance genes by 57%. Analysis by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16 S ribosomal DNA (rDNA) fragments showed that the biotreatment reduced the bacterial diversity of resistant populations enumerated at 37°C. Cloning and sequencing of the 16 S rDNA of these populations revealed that most clones in the treated swine waste were closely similar to some of the clones retrieved from the untreated swine waste. This study revealed that the aerobic thermophilic biotreatment developed in our laboratory does not prevent the introduction of facultatively anaerobic antibiotic-resistant bacteria and their resistance genes into agricultural ecosystems. Horizontal transfer of ecologically advantageous genes within microbial communities are likely to prevent thermophilic biotreatments from completely eliminating antibiotic-resistant bacteria and their resistance genes in animal wastes.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-009-9546-4</identifier><identifier>PMID: 19562247</identifier><language>eng</language><publisher>New York: New York : Springer-Verlag</publisher><subject>Agricultural ecosystems ; Anaerobic bacteria ; Animal Feed ; Animal wastes ; Animals ; Antibiotic resistance ; Antibiotics ; Bacteria ; Bacteria, Anaerobic ; Bacteria, Anaerobic - drug effects ; Bacteria, Anaerobic - genetics ; Bacteria, Anaerobic - isolation &amp; purification ; Batch reactors ; Biodiversity ; Biomedical and Life Sciences ; Bioreactors ; Bioreactors - microbiology ; Biotechnology ; Cloning ; Colony Count, Microbial ; Computer Science ; DNA, Bacterial ; DNA, Bacterial - genetics ; Drug Resistance, Multiple, Bacterial ; Drug Resistance, Multiple, Bacterial - genetics ; Ecology ; ENVIRONMENTAL MICROBIOLOGY ; Factory farming ; Feeds ; Genes, Bacterial ; Geoecology/Natural Processes ; Libraries ; Life Sciences ; Microbial activity ; Microbial Ecology ; Microbiology ; Nature Conservation ; Phylogeny ; Polymerase chain reaction ; Ribosomal DNA ; RNA, Ribosomal, 16S ; RNA, Ribosomal, 16S - genetics ; Swine ; Waste Disposal, Fluid ; Waste Disposal, Fluid - methods ; Waste treatment ; Water Quality/Water Pollution</subject><ispartof>Microbial ecology, 2009-11, Vol.58 (4), p.773-785</ispartof><rights>Copyright 2009 Springer Science+Business Media, Inc.</rights><rights>Springer Science+Business Media, LLC 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-6afc43c884c78aed14b7c7a668ccb696926e0b7b8f01ec51bbab8de875f526693</citedby><cites>FETCH-LOGICAL-c486t-6afc43c884c78aed14b7c7a668ccb696926e0b7b8f01ec51bbab8de875f526693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27770568$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27770568$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,27929,27930,41493,42562,51324,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19562247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://riip.hal.science/pasteur-00819954$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chénier, Martin R</creatorcontrib><creatorcontrib>Juteau, Pierre</creatorcontrib><title>Impact of an Aerobic Thermophilic Sequencing Batch Reactor on Antibiotic-Resistant Anaerobic Bacteria in Swine Waste</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on anaerobic antibiotic-resistant bacteria in swine waste. Despite 162- to 6,166-fold reduction in antibiotic-resistant populations enumerated in the swine waste at 25°C and 37°C, resistant populations remained significant (10⁴ to 10⁵ most probable number per milliliter) in the treated swine waste. Five resistance genes were detected before [tet(LMOS) erm(B)], and six resistance genes were detected after [tet(LMOSY) erm(B)] biotreatment. However, the biotreatment decreased the frequency of detection of resistance genes by 57%. Analysis by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16 S ribosomal DNA (rDNA) fragments showed that the biotreatment reduced the bacterial diversity of resistant populations enumerated at 37°C. Cloning and sequencing of the 16 S rDNA of these populations revealed that most clones in the treated swine waste were closely similar to some of the clones retrieved from the untreated swine waste. This study revealed that the aerobic thermophilic biotreatment developed in our laboratory does not prevent the introduction of facultatively anaerobic antibiotic-resistant bacteria and their resistance genes into agricultural ecosystems. Horizontal transfer of ecologically advantageous genes within microbial communities are likely to prevent thermophilic biotreatments from completely eliminating antibiotic-resistant bacteria and their resistance genes in animal wastes.</description><subject>Agricultural ecosystems</subject><subject>Anaerobic bacteria</subject><subject>Animal Feed</subject><subject>Animal wastes</subject><subject>Animals</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria, Anaerobic</subject><subject>Bacteria, Anaerobic - drug effects</subject><subject>Bacteria, Anaerobic - genetics</subject><subject>Bacteria, Anaerobic - isolation &amp; purification</subject><subject>Batch reactors</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Cloning</subject><subject>Colony Count, Microbial</subject><subject>Computer Science</subject><subject>DNA, Bacterial</subject><subject>DNA, Bacterial - genetics</subject><subject>Drug Resistance, Multiple, Bacterial</subject><subject>Drug Resistance, Multiple, Bacterial - genetics</subject><subject>Ecology</subject><subject>ENVIRONMENTAL MICROBIOLOGY</subject><subject>Factory farming</subject><subject>Feeds</subject><subject>Genes, Bacterial</subject><subject>Geoecology/Natural Processes</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Microbial activity</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Nature Conservation</subject><subject>Phylogeny</subject><subject>Polymerase chain reaction</subject><subject>Ribosomal DNA</subject><subject>RNA, Ribosomal, 16S</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Swine</subject><subject>Waste Disposal, Fluid</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Waste treatment</subject><subject>Water Quality/Water Pollution</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtvEzEUhUcIREPhB7AARmxYGa4f48cyrYBWioTUtIKdZTuexNHMONgzIP49DhO1EouuLPt-5_jee6rqNYaPGEB8ygCESQSgkGoYR-xJtcCMEoQl-_G0WpRCgygn8qx6kfMeAAtO6PPqDKuGE8LEohqv-4NxYx3b2gz10qdog6tvdz718bALXbms_c_JDy4M2_rCjG5X3_iiiKmORTCMwYY4BodufA55NMNYHs3J56KAPgVTh6Fe_w6Dr7-bPPqX1bPWdNm_Op3n1d2Xz7eXV2j17ev15XKFHJN8RNy0jlEnJXNCGr_BzAonDOfSOcsVV4R7sMLKFrB3DbbWWLnxUjRtQzhX9LxCs-_OdPqQQm_SHx1N0FfLlT4cO5mSBpBYlfX9woX_MPOHFMvMedR9yM53nRl8nLJWwJii-J_z46SglAOjDSnk-__IfZzSUMbWBAPDAnNWIDxDLsWck2_vu8Wgj1HrOerSrNLHqPVR8_ZkPNnebx4Up2wLQGYgl9Kw9enh58dc38yifS4R35sSIQQ0XJb6u7nemqjNNoWs79YEMIWyFkUk0L-6asY9</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Chénier, Martin R</creator><creator>Juteau, Pierre</creator><general>New York : Springer-Verlag</general><general>Springer Science + Business Media, Inc</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>H97</scope><scope>1XC</scope></search><sort><creationdate>20091101</creationdate><title>Impact of an Aerobic Thermophilic Sequencing Batch Reactor on Antibiotic-Resistant Anaerobic Bacteria in Swine Waste</title><author>Chénier, Martin R ; Juteau, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-6afc43c884c78aed14b7c7a668ccb696926e0b7b8f01ec51bbab8de875f526693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agricultural ecosystems</topic><topic>Anaerobic bacteria</topic><topic>Animal Feed</topic><topic>Animal wastes</topic><topic>Animals</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria, Anaerobic</topic><topic>Bacteria, Anaerobic - drug effects</topic><topic>Bacteria, Anaerobic - genetics</topic><topic>Bacteria, Anaerobic - isolation &amp; purification</topic><topic>Batch reactors</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Cloning</topic><topic>Colony Count, Microbial</topic><topic>Computer Science</topic><topic>DNA, Bacterial</topic><topic>DNA, Bacterial - genetics</topic><topic>Drug Resistance, Multiple, Bacterial</topic><topic>Drug Resistance, Multiple, Bacterial - genetics</topic><topic>Ecology</topic><topic>ENVIRONMENTAL MICROBIOLOGY</topic><topic>Factory farming</topic><topic>Feeds</topic><topic>Genes, Bacterial</topic><topic>Geoecology/Natural Processes</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Microbial activity</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Nature Conservation</topic><topic>Phylogeny</topic><topic>Polymerase chain reaction</topic><topic>Ribosomal DNA</topic><topic>RNA, Ribosomal, 16S</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Swine</topic><topic>Waste Disposal, Fluid</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Waste treatment</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chénier, Martin R</creatorcontrib><creatorcontrib>Juteau, Pierre</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chénier, Martin R</au><au>Juteau, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of an Aerobic Thermophilic Sequencing Batch Reactor on Antibiotic-Resistant Anaerobic Bacteria in Swine Waste</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>58</volume><issue>4</issue><spage>773</spage><epage>785</epage><pages>773-785</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><abstract>The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on anaerobic antibiotic-resistant bacteria in swine waste. Despite 162- to 6,166-fold reduction in antibiotic-resistant populations enumerated in the swine waste at 25°C and 37°C, resistant populations remained significant (10⁴ to 10⁵ most probable number per milliliter) in the treated swine waste. Five resistance genes were detected before [tet(LMOS) erm(B)], and six resistance genes were detected after [tet(LMOSY) erm(B)] biotreatment. However, the biotreatment decreased the frequency of detection of resistance genes by 57%. Analysis by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16 S ribosomal DNA (rDNA) fragments showed that the biotreatment reduced the bacterial diversity of resistant populations enumerated at 37°C. Cloning and sequencing of the 16 S rDNA of these populations revealed that most clones in the treated swine waste were closely similar to some of the clones retrieved from the untreated swine waste. This study revealed that the aerobic thermophilic biotreatment developed in our laboratory does not prevent the introduction of facultatively anaerobic antibiotic-resistant bacteria and their resistance genes into agricultural ecosystems. Horizontal transfer of ecologically advantageous genes within microbial communities are likely to prevent thermophilic biotreatments from completely eliminating antibiotic-resistant bacteria and their resistance genes in animal wastes.</abstract><cop>New York</cop><pub>New York : Springer-Verlag</pub><pmid>19562247</pmid><doi>10.1007/s00248-009-9546-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-3628
ispartof Microbial ecology, 2009-11, Vol.58 (4), p.773-785
issn 0095-3628
1432-184X
language eng
recordid cdi_hal_primary_oai_HAL_pasteur_00819954v1
source MEDLINE; SpringerNature Journals; JSTOR Archive Collection A-Z Listing
subjects Agricultural ecosystems
Anaerobic bacteria
Animal Feed
Animal wastes
Animals
Antibiotic resistance
Antibiotics
Bacteria
Bacteria, Anaerobic
Bacteria, Anaerobic - drug effects
Bacteria, Anaerobic - genetics
Bacteria, Anaerobic - isolation & purification
Batch reactors
Biodiversity
Biomedical and Life Sciences
Bioreactors
Bioreactors - microbiology
Biotechnology
Cloning
Colony Count, Microbial
Computer Science
DNA, Bacterial
DNA, Bacterial - genetics
Drug Resistance, Multiple, Bacterial
Drug Resistance, Multiple, Bacterial - genetics
Ecology
ENVIRONMENTAL MICROBIOLOGY
Factory farming
Feeds
Genes, Bacterial
Geoecology/Natural Processes
Libraries
Life Sciences
Microbial activity
Microbial Ecology
Microbiology
Nature Conservation
Phylogeny
Polymerase chain reaction
Ribosomal DNA
RNA, Ribosomal, 16S
RNA, Ribosomal, 16S - genetics
Swine
Waste Disposal, Fluid
Waste Disposal, Fluid - methods
Waste treatment
Water Quality/Water Pollution
title Impact of an Aerobic Thermophilic Sequencing Batch Reactor on Antibiotic-Resistant Anaerobic Bacteria in Swine Waste
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20an%20Aerobic%20Thermophilic%20Sequencing%20Batch%20Reactor%20on%20Antibiotic-Resistant%20Anaerobic%20Bacteria%20in%20Swine%20Waste&rft.jtitle=Microbial%20ecology&rft.au=Ch%C3%A9nier,%20Martin%20R&rft.date=2009-11-01&rft.volume=58&rft.issue=4&rft.spage=773&rft.epage=785&rft.pages=773-785&rft.issn=0095-3628&rft.eissn=1432-184X&rft_id=info:doi/10.1007/s00248-009-9546-4&rft_dat=%3Cjstor_hal_p%3E27770568%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210417164&rft_id=info:pmid/19562247&rft_jstor_id=27770568&rfr_iscdi=true