Distribution and functional characterization of pituitary adenylate cyclase–activating polypeptide receptors in the brain of non-human primates
Abstract The distribution and density of pituitary adenylate cyclase–activating polypeptide (PACAP) binding sites have been investigated in the brain of the primates Jacchus callithrix (marmoset) and Macaca fascicularis (macaque) using [125 I]-PACAP27 as a radioligand. PACAP binding sites were widel...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2009-05, Vol.160 (2), p.434-451 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 451 |
---|---|
container_issue | 2 |
container_start_page | 434 |
container_title | Neuroscience |
container_volume | 160 |
creator | Jolivel, V Basille, M Aubert, N de Jouffrey, S Ancian, P Le Bigot, J.-F Noack, P Massonneau, M Fournier, A Vaudry, H Gonzalez, B.J Vaudry, D |
description | Abstract The distribution and density of pituitary adenylate cyclase–activating polypeptide (PACAP) binding sites have been investigated in the brain of the primates Jacchus callithrix (marmoset) and Macaca fascicularis (macaque) using [125 I]-PACAP27 as a radioligand. PACAP binding sites were widely expressed in the brain of these two species with particularly high densities in the septum, hypothalamus and habenula. A moderate density of recognition sites was seen in all subdivisions of the cerebral cortex with a heterogenous distribution, the highest concentrations occurring in layers I and VI while the underlying white matter was almost devoid of binding sites. Reverse transcriptase–polymerase chain reaction (RT-PCR) analysis revealed intense expression of the mRNAs encoding the short and hop-1 variants of pituitary adenylate cyclase–activating polypeptide–specific receptor (PAC1-R) in the cortex of both marmoset and macaque, whereas vasoactive intestinal polypeptide/pituitary adenylate cyclase–activating polypeptide mutual receptor, subtype 1 (VPAC1-R) and vasoactive intestinal polypeptide/pituitary adenylate cyclase–activating polypeptide mutual receptor, subtype 2 (VPAC2-R) mRNAs were expressed at a much lower level. In situ hybridization histochemistry showed intense expression of PAC1-R and weak expression of VPAC1-R mRNAs in layer IV of the cerebral cortex. Incubation of cortical tissue slices with PACAP induced a dose-dependent stimulation of cyclic AMP formation, indicating that PACAP binding sites correspond to functional receptors. Moreover, treatment of primate cortical slices with 100 nM PACAP significantly reduced the activity of caspase-3, a key enzyme of the apoptotic cascade. The present results indicate that PACAP should exert the same neuroprotective effect in the brain of primates as in rodents and suggest that PAC1-R agonists may have a therapeutic value to prevent neuronal cell death after stroke or in specific neurodegenerative diseases. |
doi_str_mv | 10.1016/j.neuroscience.2009.02.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_00819922v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S030645220900236X</els_id><sourcerecordid>20528927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-411df41864ee2294e7936c6a4c6a64ae31b6ba42ee76ebc86ed1b24db3dcd7253</originalsourceid><addsrcrecordid>eNqNkt2K1DAUx4so7rj6ChIE965jkqZp64Ww7KorDHihgnfhNDl1MnbSmqQD9cpXEN_QJzHzwSreaDghCfmdD87_ZNkTRpeMMvlss3Q4-SFoi07jklPaLClPVt_JFqyuirwqhbibLWhBZS5Kzs-yByFsaFqlKO5nZ6zhhWxouci-X9sQvW2naAdHwBnSTU7vH9ATvQYPOqK3X-HwP3RktHGyEfxMwKCbe4hI9Kx7CPjz249E211i3ScyDv084hitQeJRp9vgA7GOxDWS1oM9hHODy9fTFhwZvd2mYOFhdq-DPuCj03mefXj18v3VTb56-_rN1eUq12VTx1wwZjrBaikQOW8EVk0htQSRthSABWtlC4IjVhJbXUs0rOXCtIXRpuJlcZ7lx7hr6NUhuZ_VAFbdXK7UCCGmHitKa9Y0nO9Y4i-O_OiHLxOGqLY2aOx7cDhMQcmKcVlX_wY5LXnd8CqBz4-gTmIGj91tGYyqvdJqo_5UWu2VVpQnq5Pz41OWqd2i-e16kjYBT08ABA1958FpG245zgSjdUETd33kMDV7Z9GrUzpjk2xRmcH-Xz0v_gqje-tsyvwZZwybYfJppIJiKiQH9W4_m_vRpA2lqeKPxS8Oduha</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20528927</pqid></control><display><type>article</type><title>Distribution and functional characterization of pituitary adenylate cyclase–activating polypeptide receptors in the brain of non-human primates</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jolivel, V ; Basille, M ; Aubert, N ; de Jouffrey, S ; Ancian, P ; Le Bigot, J.-F ; Noack, P ; Massonneau, M ; Fournier, A ; Vaudry, H ; Gonzalez, B.J ; Vaudry, D</creator><creatorcontrib>Jolivel, V ; Basille, M ; Aubert, N ; de Jouffrey, S ; Ancian, P ; Le Bigot, J.-F ; Noack, P ; Massonneau, M ; Fournier, A ; Vaudry, H ; Gonzalez, B.J ; Vaudry, D</creatorcontrib><description>Abstract The distribution and density of pituitary adenylate cyclase–activating polypeptide (PACAP) binding sites have been investigated in the brain of the primates Jacchus callithrix (marmoset) and Macaca fascicularis (macaque) using [125 I]-PACAP27 as a radioligand. PACAP binding sites were widely expressed in the brain of these two species with particularly high densities in the septum, hypothalamus and habenula. A moderate density of recognition sites was seen in all subdivisions of the cerebral cortex with a heterogenous distribution, the highest concentrations occurring in layers I and VI while the underlying white matter was almost devoid of binding sites. Reverse transcriptase–polymerase chain reaction (RT-PCR) analysis revealed intense expression of the mRNAs encoding the short and hop-1 variants of pituitary adenylate cyclase–activating polypeptide–specific receptor (PAC1-R) in the cortex of both marmoset and macaque, whereas vasoactive intestinal polypeptide/pituitary adenylate cyclase–activating polypeptide mutual receptor, subtype 1 (VPAC1-R) and vasoactive intestinal polypeptide/pituitary adenylate cyclase–activating polypeptide mutual receptor, subtype 2 (VPAC2-R) mRNAs were expressed at a much lower level. In situ hybridization histochemistry showed intense expression of PAC1-R and weak expression of VPAC1-R mRNAs in layer IV of the cerebral cortex. Incubation of cortical tissue slices with PACAP induced a dose-dependent stimulation of cyclic AMP formation, indicating that PACAP binding sites correspond to functional receptors. Moreover, treatment of primate cortical slices with 100 nM PACAP significantly reduced the activity of caspase-3, a key enzyme of the apoptotic cascade. The present results indicate that PACAP should exert the same neuroprotective effect in the brain of primates as in rodents and suggest that PAC1-R agonists may have a therapeutic value to prevent neuronal cell death after stroke or in specific neurodegenerative diseases.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2009.02.028</identifier><identifier>PMID: 19236905</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Animals ; binding sites ; Biological and medical sciences ; Brain ; Brain - metabolism ; Brain Mapping ; Callithrix ; caspase ; cerebral cortex ; Female ; Fundamental and applied biological sciences. Psychology ; Habenula ; Habenula - metabolism ; Hypothalamus ; Hypothalamus - metabolism ; in situ hybridization ; Life Sciences ; Macaca fascicularis ; Male ; Neurology ; neuropeptides ; PACAP ; Pituitary Adenylate Cyclase-Activating Polypeptide ; Pituitary Adenylate Cyclase-Activating Polypeptide - genetics ; Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism ; Primates ; Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide ; Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - classification ; Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - genetics ; Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism ; RNA, Messenger ; RNA, Messenger - analysis ; Septum of Brain ; Septum of Brain - metabolism ; Species Specificity ; Tissue Distribution ; Toxicology ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuroscience, 2009-05, Vol.160 (2), p.434-451</ispartof><rights>IBRO</rights><rights>2009 IBRO</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-411df41864ee2294e7936c6a4c6a64ae31b6ba42ee76ebc86ed1b24db3dcd7253</citedby><cites>FETCH-LOGICAL-c598t-411df41864ee2294e7936c6a4c6a64ae31b6ba42ee76ebc86ed1b24db3dcd7253</cites><orcidid>0000-0003-3567-7452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030645220900236X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21410830$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19236905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://riip.hal.science/pasteur-00819922$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jolivel, V</creatorcontrib><creatorcontrib>Basille, M</creatorcontrib><creatorcontrib>Aubert, N</creatorcontrib><creatorcontrib>de Jouffrey, S</creatorcontrib><creatorcontrib>Ancian, P</creatorcontrib><creatorcontrib>Le Bigot, J.-F</creatorcontrib><creatorcontrib>Noack, P</creatorcontrib><creatorcontrib>Massonneau, M</creatorcontrib><creatorcontrib>Fournier, A</creatorcontrib><creatorcontrib>Vaudry, H</creatorcontrib><creatorcontrib>Gonzalez, B.J</creatorcontrib><creatorcontrib>Vaudry, D</creatorcontrib><title>Distribution and functional characterization of pituitary adenylate cyclase–activating polypeptide receptors in the brain of non-human primates</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>Abstract The distribution and density of pituitary adenylate cyclase–activating polypeptide (PACAP) binding sites have been investigated in the brain of the primates Jacchus callithrix (marmoset) and Macaca fascicularis (macaque) using [125 I]-PACAP27 as a radioligand. PACAP binding sites were widely expressed in the brain of these two species with particularly high densities in the septum, hypothalamus and habenula. A moderate density of recognition sites was seen in all subdivisions of the cerebral cortex with a heterogenous distribution, the highest concentrations occurring in layers I and VI while the underlying white matter was almost devoid of binding sites. Reverse transcriptase–polymerase chain reaction (RT-PCR) analysis revealed intense expression of the mRNAs encoding the short and hop-1 variants of pituitary adenylate cyclase–activating polypeptide–specific receptor (PAC1-R) in the cortex of both marmoset and macaque, whereas vasoactive intestinal polypeptide/pituitary adenylate cyclase–activating polypeptide mutual receptor, subtype 1 (VPAC1-R) and vasoactive intestinal polypeptide/pituitary adenylate cyclase–activating polypeptide mutual receptor, subtype 2 (VPAC2-R) mRNAs were expressed at a much lower level. In situ hybridization histochemistry showed intense expression of PAC1-R and weak expression of VPAC1-R mRNAs in layer IV of the cerebral cortex. Incubation of cortical tissue slices with PACAP induced a dose-dependent stimulation of cyclic AMP formation, indicating that PACAP binding sites correspond to functional receptors. Moreover, treatment of primate cortical slices with 100 nM PACAP significantly reduced the activity of caspase-3, a key enzyme of the apoptotic cascade. The present results indicate that PACAP should exert the same neuroprotective effect in the brain of primates as in rodents and suggest that PAC1-R agonists may have a therapeutic value to prevent neuronal cell death after stroke or in specific neurodegenerative diseases.</description><subject>Animals</subject><subject>binding sites</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain Mapping</subject><subject>Callithrix</subject><subject>caspase</subject><subject>cerebral cortex</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Habenula</subject><subject>Habenula - metabolism</subject><subject>Hypothalamus</subject><subject>Hypothalamus - metabolism</subject><subject>in situ hybridization</subject><subject>Life Sciences</subject><subject>Macaca fascicularis</subject><subject>Male</subject><subject>Neurology</subject><subject>neuropeptides</subject><subject>PACAP</subject><subject>Pituitary Adenylate Cyclase-Activating Polypeptide</subject><subject>Pituitary Adenylate Cyclase-Activating Polypeptide - genetics</subject><subject>Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism</subject><subject>Primates</subject><subject>Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide</subject><subject>Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - classification</subject><subject>Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - genetics</subject><subject>Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism</subject><subject>RNA, Messenger</subject><subject>RNA, Messenger - analysis</subject><subject>Septum of Brain</subject><subject>Septum of Brain - metabolism</subject><subject>Species Specificity</subject><subject>Tissue Distribution</subject><subject>Toxicology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkt2K1DAUx4so7rj6ChIE965jkqZp64Ww7KorDHihgnfhNDl1MnbSmqQD9cpXEN_QJzHzwSreaDghCfmdD87_ZNkTRpeMMvlss3Q4-SFoi07jklPaLClPVt_JFqyuirwqhbibLWhBZS5Kzs-yByFsaFqlKO5nZ6zhhWxouci-X9sQvW2naAdHwBnSTU7vH9ATvQYPOqK3X-HwP3RktHGyEfxMwKCbe4hI9Kx7CPjz249E211i3ScyDv084hitQeJRp9vgA7GOxDWS1oM9hHODy9fTFhwZvd2mYOFhdq-DPuCj03mefXj18v3VTb56-_rN1eUq12VTx1wwZjrBaikQOW8EVk0htQSRthSABWtlC4IjVhJbXUs0rOXCtIXRpuJlcZ7lx7hr6NUhuZ_VAFbdXK7UCCGmHitKa9Y0nO9Y4i-O_OiHLxOGqLY2aOx7cDhMQcmKcVlX_wY5LXnd8CqBz4-gTmIGj91tGYyqvdJqo_5UWu2VVpQnq5Pz41OWqd2i-e16kjYBT08ABA1958FpG245zgSjdUETd33kMDV7Z9GrUzpjk2xRmcH-Xz0v_gqje-tsyvwZZwybYfJppIJiKiQH9W4_m_vRpA2lqeKPxS8Oduha</recordid><startdate>20090505</startdate><enddate>20090505</enddate><creator>Jolivel, V</creator><creator>Basille, M</creator><creator>Aubert, N</creator><creator>de Jouffrey, S</creator><creator>Ancian, P</creator><creator>Le Bigot, J.-F</creator><creator>Noack, P</creator><creator>Massonneau, M</creator><creator>Fournier, A</creator><creator>Vaudry, H</creator><creator>Gonzalez, B.J</creator><creator>Vaudry, D</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier - International Brain Research Organization</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3567-7452</orcidid></search><sort><creationdate>20090505</creationdate><title>Distribution and functional characterization of pituitary adenylate cyclase–activating polypeptide receptors in the brain of non-human primates</title><author>Jolivel, V ; Basille, M ; Aubert, N ; de Jouffrey, S ; Ancian, P ; Le Bigot, J.-F ; Noack, P ; Massonneau, M ; Fournier, A ; Vaudry, H ; Gonzalez, B.J ; Vaudry, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-411df41864ee2294e7936c6a4c6a64ae31b6ba42ee76ebc86ed1b24db3dcd7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>binding sites</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain Mapping</topic><topic>Callithrix</topic><topic>caspase</topic><topic>cerebral cortex</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Habenula</topic><topic>Habenula - metabolism</topic><topic>Hypothalamus</topic><topic>Hypothalamus - metabolism</topic><topic>in situ hybridization</topic><topic>Life Sciences</topic><topic>Macaca fascicularis</topic><topic>Male</topic><topic>Neurology</topic><topic>neuropeptides</topic><topic>PACAP</topic><topic>Pituitary Adenylate Cyclase-Activating Polypeptide</topic><topic>Pituitary Adenylate Cyclase-Activating Polypeptide - genetics</topic><topic>Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism</topic><topic>Primates</topic><topic>Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide</topic><topic>Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - classification</topic><topic>Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - genetics</topic><topic>Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism</topic><topic>RNA, Messenger</topic><topic>RNA, Messenger - analysis</topic><topic>Septum of Brain</topic><topic>Septum of Brain - metabolism</topic><topic>Species Specificity</topic><topic>Tissue Distribution</topic><topic>Toxicology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jolivel, V</creatorcontrib><creatorcontrib>Basille, M</creatorcontrib><creatorcontrib>Aubert, N</creatorcontrib><creatorcontrib>de Jouffrey, S</creatorcontrib><creatorcontrib>Ancian, P</creatorcontrib><creatorcontrib>Le Bigot, J.-F</creatorcontrib><creatorcontrib>Noack, P</creatorcontrib><creatorcontrib>Massonneau, M</creatorcontrib><creatorcontrib>Fournier, A</creatorcontrib><creatorcontrib>Vaudry, H</creatorcontrib><creatorcontrib>Gonzalez, B.J</creatorcontrib><creatorcontrib>Vaudry, D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jolivel, V</au><au>Basille, M</au><au>Aubert, N</au><au>de Jouffrey, S</au><au>Ancian, P</au><au>Le Bigot, J.-F</au><au>Noack, P</au><au>Massonneau, M</au><au>Fournier, A</au><au>Vaudry, H</au><au>Gonzalez, B.J</au><au>Vaudry, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution and functional characterization of pituitary adenylate cyclase–activating polypeptide receptors in the brain of non-human primates</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2009-05-05</date><risdate>2009</risdate><volume>160</volume><issue>2</issue><spage>434</spage><epage>451</epage><pages>434-451</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>Abstract The distribution and density of pituitary adenylate cyclase–activating polypeptide (PACAP) binding sites have been investigated in the brain of the primates Jacchus callithrix (marmoset) and Macaca fascicularis (macaque) using [125 I]-PACAP27 as a radioligand. PACAP binding sites were widely expressed in the brain of these two species with particularly high densities in the septum, hypothalamus and habenula. A moderate density of recognition sites was seen in all subdivisions of the cerebral cortex with a heterogenous distribution, the highest concentrations occurring in layers I and VI while the underlying white matter was almost devoid of binding sites. Reverse transcriptase–polymerase chain reaction (RT-PCR) analysis revealed intense expression of the mRNAs encoding the short and hop-1 variants of pituitary adenylate cyclase–activating polypeptide–specific receptor (PAC1-R) in the cortex of both marmoset and macaque, whereas vasoactive intestinal polypeptide/pituitary adenylate cyclase–activating polypeptide mutual receptor, subtype 1 (VPAC1-R) and vasoactive intestinal polypeptide/pituitary adenylate cyclase–activating polypeptide mutual receptor, subtype 2 (VPAC2-R) mRNAs were expressed at a much lower level. In situ hybridization histochemistry showed intense expression of PAC1-R and weak expression of VPAC1-R mRNAs in layer IV of the cerebral cortex. Incubation of cortical tissue slices with PACAP induced a dose-dependent stimulation of cyclic AMP formation, indicating that PACAP binding sites correspond to functional receptors. Moreover, treatment of primate cortical slices with 100 nM PACAP significantly reduced the activity of caspase-3, a key enzyme of the apoptotic cascade. The present results indicate that PACAP should exert the same neuroprotective effect in the brain of primates as in rodents and suggest that PAC1-R agonists may have a therapeutic value to prevent neuronal cell death after stroke or in specific neurodegenerative diseases.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><pmid>19236905</pmid><doi>10.1016/j.neuroscience.2009.02.028</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3567-7452</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4522 |
ispartof | Neuroscience, 2009-05, Vol.160 (2), p.434-451 |
issn | 0306-4522 1873-7544 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_pasteur_00819922v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals binding sites Biological and medical sciences Brain Brain - metabolism Brain Mapping Callithrix caspase cerebral cortex Female Fundamental and applied biological sciences. Psychology Habenula Habenula - metabolism Hypothalamus Hypothalamus - metabolism in situ hybridization Life Sciences Macaca fascicularis Male Neurology neuropeptides PACAP Pituitary Adenylate Cyclase-Activating Polypeptide Pituitary Adenylate Cyclase-Activating Polypeptide - genetics Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism Primates Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - classification Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - genetics Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide - metabolism RNA, Messenger RNA, Messenger - analysis Septum of Brain Septum of Brain - metabolism Species Specificity Tissue Distribution Toxicology Vertebrates: nervous system and sense organs |
title | Distribution and functional characterization of pituitary adenylate cyclase–activating polypeptide receptors in the brain of non-human primates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20and%20functional%20characterization%20of%20pituitary%20adenylate%20cyclase%E2%80%93activating%20polypeptide%20receptors%20in%20the%20brain%20of%20non-human%20primates&rft.jtitle=Neuroscience&rft.au=Jolivel,%20V&rft.date=2009-05-05&rft.volume=160&rft.issue=2&rft.spage=434&rft.epage=451&rft.pages=434-451&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/j.neuroscience.2009.02.028&rft_dat=%3Cproquest_hal_p%3E20528927%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20528927&rft_id=info:pmid/19236905&rft_els_id=1_s2_0_S030645220900236X&rfr_iscdi=true |