Compound Logics for Modification Problems
We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. The core of our framework is a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence...
Gespeichert in:
Veröffentlicht in: | ACM transactions on computational logic 2024-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | ACM transactions on computational logic |
container_volume | |
creator | Fomin, Fedor V. Golovach, Petr A. Sau, Ignasi Stamoulis, Giannos Thilikos, Dimitrios M. |
description | We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. The core of our framework is a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence, defining some property of the modified part of the graph, and the target sentence, defining some property of the resulting graph. In our framework, modulator sentences are in counting monadic second-order logic (CMSO) and have models of bounded treewidth, while target sentences express first-order logic (FO) properties. Our logic captures problems that are not definable in first-order logic and, moreover, may have instances of unbounded treewidth. Our main result is that, for this compound logic, model-checking can be done in quadratic time on minor-free graphs. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem instances of unbounded treewidth, for which Courcelle's theorem does not apply. The proof of our meta-theorem combines novel combinatorial results related to the Flat Wall theorem along with elements of the proof of Courcelle's theorem and Gaifman's theorem. Our algorithmic meta-theorem encompasses, unifies, and extends the known meta-algorithmic results for CMSO and FO on minor-closed graph classes. |
doi_str_mv | 10.1145/3696451 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_04825119v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_lirmm_04825119v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1201-d64ba817265aecf6060402e43311d518a24a93e42c2f90a4a21ba1f90554c2303</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCq6rePfUm4hUM_lom-NSVleo6EHBW5imjUaazZKo4L-3S9c9zQvzzBxeQs6B3gAIecsLVQgJB2QGUpa5EvLtcJuZynlZyWNyktInpcBKzmbkqg5-E77XXdaEd2dSZkPMHkPnrDP45cI6e46hHXqfTsmRxSH1Z7s5J693y5d6lTdP9w_1oskRGIW8K0SLFZSskNgbW9CCCsp6wTlAJ6FCJlDxXjDDrKIokEGLMEYphWGc8jm5nv5-4KA30XmMvzqg06tFowcXvddUVEwCqB8Y9eWkTQwpxd7uT4DqbR9618coLyaJxu_R__IPs5tXPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compound Logics for Modification Problems</title><source>ACM Digital Library Complete</source><creator>Fomin, Fedor V. ; Golovach, Petr A. ; Sau, Ignasi ; Stamoulis, Giannos ; Thilikos, Dimitrios M.</creator><creatorcontrib>Fomin, Fedor V. ; Golovach, Petr A. ; Sau, Ignasi ; Stamoulis, Giannos ; Thilikos, Dimitrios M.</creatorcontrib><description>We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. The core of our framework is a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence, defining some property of the modified part of the graph, and the target sentence, defining some property of the resulting graph. In our framework, modulator sentences are in counting monadic second-order logic (CMSO) and have models of bounded treewidth, while target sentences express first-order logic (FO) properties. Our logic captures problems that are not definable in first-order logic and, moreover, may have instances of unbounded treewidth. Our main result is that, for this compound logic, model-checking can be done in quadratic time on minor-free graphs. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem instances of unbounded treewidth, for which Courcelle's theorem does not apply. The proof of our meta-theorem combines novel combinatorial results related to the Flat Wall theorem along with elements of the proof of Courcelle's theorem and Gaifman's theorem. Our algorithmic meta-theorem encompasses, unifies, and extends the known meta-algorithmic results for CMSO and FO on minor-closed graph classes.</description><identifier>ISSN: 1529-3785</identifier><identifier>EISSN: 1557-945X</identifier><identifier>DOI: 10.1145/3696451</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computer Science ; Graph algorithms ; Graph theory ; Logic ; Mathematics of computing ; Theory of computation</subject><ispartof>ACM transactions on computational logic, 2024-09</ispartof><rights>Copyright held by the owner/author(s).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a1201-d64ba817265aecf6060402e43311d518a24a93e42c2f90a4a21ba1f90554c2303</cites><orcidid>0000-0002-8981-9287 ; 0000-0002-2619-2990 ; 0000-0003-0470-1800 ; 0000-0002-4175-7793 ; 0000-0003-1955-4612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3696451$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,2282,27924,27925,40196,76228</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-04825119$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fomin, Fedor V.</creatorcontrib><creatorcontrib>Golovach, Petr A.</creatorcontrib><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>Stamoulis, Giannos</creatorcontrib><creatorcontrib>Thilikos, Dimitrios M.</creatorcontrib><title>Compound Logics for Modification Problems</title><title>ACM transactions on computational logic</title><addtitle>ACM TOCL</addtitle><description>We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. The core of our framework is a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence, defining some property of the modified part of the graph, and the target sentence, defining some property of the resulting graph. In our framework, modulator sentences are in counting monadic second-order logic (CMSO) and have models of bounded treewidth, while target sentences express first-order logic (FO) properties. Our logic captures problems that are not definable in first-order logic and, moreover, may have instances of unbounded treewidth. Our main result is that, for this compound logic, model-checking can be done in quadratic time on minor-free graphs. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem instances of unbounded treewidth, for which Courcelle's theorem does not apply. The proof of our meta-theorem combines novel combinatorial results related to the Flat Wall theorem along with elements of the proof of Courcelle's theorem and Gaifman's theorem. Our algorithmic meta-theorem encompasses, unifies, and extends the known meta-algorithmic results for CMSO and FO on minor-closed graph classes.</description><subject>Computer Science</subject><subject>Graph algorithms</subject><subject>Graph theory</subject><subject>Logic</subject><subject>Mathematics of computing</subject><subject>Theory of computation</subject><issn>1529-3785</issn><issn>1557-945X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCq6rePfUm4hUM_lom-NSVleo6EHBW5imjUaazZKo4L-3S9c9zQvzzBxeQs6B3gAIecsLVQgJB2QGUpa5EvLtcJuZynlZyWNyktInpcBKzmbkqg5-E77XXdaEd2dSZkPMHkPnrDP45cI6e46hHXqfTsmRxSH1Z7s5J693y5d6lTdP9w_1oskRGIW8K0SLFZSskNgbW9CCCsp6wTlAJ6FCJlDxXjDDrKIokEGLMEYphWGc8jm5nv5-4KA30XmMvzqg06tFowcXvddUVEwCqB8Y9eWkTQwpxd7uT4DqbR9618coLyaJxu_R__IPs5tXPA</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Fomin, Fedor V.</creator><creator>Golovach, Petr A.</creator><creator>Sau, Ignasi</creator><creator>Stamoulis, Giannos</creator><creator>Thilikos, Dimitrios M.</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0002-2619-2990</orcidid><orcidid>https://orcid.org/0000-0003-0470-1800</orcidid><orcidid>https://orcid.org/0000-0002-4175-7793</orcidid><orcidid>https://orcid.org/0000-0003-1955-4612</orcidid></search><sort><creationdate>20240920</creationdate><title>Compound Logics for Modification Problems</title><author>Fomin, Fedor V. ; Golovach, Petr A. ; Sau, Ignasi ; Stamoulis, Giannos ; Thilikos, Dimitrios M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1201-d64ba817265aecf6060402e43311d518a24a93e42c2f90a4a21ba1f90554c2303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Science</topic><topic>Graph algorithms</topic><topic>Graph theory</topic><topic>Logic</topic><topic>Mathematics of computing</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fomin, Fedor V.</creatorcontrib><creatorcontrib>Golovach, Petr A.</creatorcontrib><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>Stamoulis, Giannos</creatorcontrib><creatorcontrib>Thilikos, Dimitrios M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACM transactions on computational logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fomin, Fedor V.</au><au>Golovach, Petr A.</au><au>Sau, Ignasi</au><au>Stamoulis, Giannos</au><au>Thilikos, Dimitrios M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compound Logics for Modification Problems</atitle><jtitle>ACM transactions on computational logic</jtitle><stitle>ACM TOCL</stitle><date>2024-09-20</date><risdate>2024</risdate><issn>1529-3785</issn><eissn>1557-945X</eissn><abstract>We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. The core of our framework is a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence, defining some property of the modified part of the graph, and the target sentence, defining some property of the resulting graph. In our framework, modulator sentences are in counting monadic second-order logic (CMSO) and have models of bounded treewidth, while target sentences express first-order logic (FO) properties. Our logic captures problems that are not definable in first-order logic and, moreover, may have instances of unbounded treewidth. Our main result is that, for this compound logic, model-checking can be done in quadratic time on minor-free graphs. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem instances of unbounded treewidth, for which Courcelle's theorem does not apply. The proof of our meta-theorem combines novel combinatorial results related to the Flat Wall theorem along with elements of the proof of Courcelle's theorem and Gaifman's theorem. Our algorithmic meta-theorem encompasses, unifies, and extends the known meta-algorithmic results for CMSO and FO on minor-closed graph classes.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3696451</doi><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0002-2619-2990</orcidid><orcidid>https://orcid.org/0000-0003-0470-1800</orcidid><orcidid>https://orcid.org/0000-0002-4175-7793</orcidid><orcidid>https://orcid.org/0000-0003-1955-4612</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-3785 |
ispartof | ACM transactions on computational logic, 2024-09 |
issn | 1529-3785 1557-945X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_lirmm_04825119v1 |
source | ACM Digital Library Complete |
subjects | Computer Science Graph algorithms Graph theory Logic Mathematics of computing Theory of computation |
title | Compound Logics for Modification Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compound%20Logics%20for%20Modification%20Problems&rft.jtitle=ACM%20transactions%20on%20computational%20logic&rft.au=Fomin,%20Fedor%20V.&rft.date=2024-09-20&rft.issn=1529-3785&rft.eissn=1557-945X&rft_id=info:doi/10.1145/3696451&rft_dat=%3Chal_cross%3Eoai_HAL_lirmm_04825119v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |