Growth of bilinear maps II: bounds and orders
A good range of problems on trees can be described by the following general setting: Given a bilinear map ∗ : R d × R d → R d and a vector s ∈ R d , we need to estimate the largest possible absolute value g ( n ) of an entry over all vectors obtained from applying n - 1 applications of ∗ to n instan...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2024, Vol.60 (1), p.273-293 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 293 |
---|---|
container_issue | 1 |
container_start_page | 273 |
container_title | Journal of algebraic combinatorics |
container_volume | 60 |
creator | Bui, Vuong |
description | A good range of problems on trees can be described by the following general setting: Given a bilinear map
∗
:
R
d
×
R
d
→
R
d
and a vector
s
∈
R
d
, we need to estimate the largest possible absolute value
g
(
n
) of an entry over all vectors obtained from applying
n
-
1
applications of
∗
to
n
instances of
s
. When the coefficients of
∗
are nonnegative and the entries of
s
are positive, the value
g
(
n
) is known to follow a growth rate
λ
=
lim
n
→
∞
g
(
n
)
n
. In this article, we prove that for such
∗
and
s
there exist nonnegative numbers
r
,
r
′
and positive numbers
a
,
a
′
so that for every
n
,
a
n
-
r
λ
n
≤
g
(
n
)
≤
a
′
n
r
′
λ
n
.
While proving the upper bound, we actually also provide another approach in proving the limit
λ
itself. The lower bound is proved by showing a certain form of submultiplicativity for
g
(
n
). Corollaries include a lower bound and an upper bound for
λ
, which are followed by a good estimation of
λ
when we have the value of
g
(
n
) for an
n
large enough. |
doi_str_mv | 10.1007/s10801-024-01336-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_04824364v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087290950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-683a28474f94a218de9f6f86074acdbecd392b95237feb85ced92b7054add8113</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWAS4m-fMwkz10pWgsFN7oOmUnGTpmZ1KRV_PdOHdGdq8eFcy-PQ8glgxsGoG4TAw2MApcUmBAFxSMyYbniFBnyYzIB5DlFjXhKzlLaAABqlk8IXcTwsVtnoc7Kpm16b2PW2W3Klsu7rAz73qXM9i4L0fmYzslJbdvkL37ulLw83D_PH-nqabGcz1a0ElDsaKGF5VoqWaO0nGnnsS5qXYCStnKlr5xAXmLOhap9qfPKuyEryKV1TjMmpuR63F3b1mxj09n4aYJtzONsZdomdp0BqbkUhXw_0FcjvY3hbe_TzmzCPvbDg0aAVhwBcxgoPlJVDClFX_8OMzAHiWaUaAaJ5luiwaEkxlIa4P7Vx7_pf1pfhOBx4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087290950</pqid></control><display><type>article</type><title>Growth of bilinear maps II: bounds and orders</title><source>SpringerLink Journals</source><creator>Bui, Vuong</creator><creatorcontrib>Bui, Vuong</creatorcontrib><description>A good range of problems on trees can be described by the following general setting: Given a bilinear map
∗
:
R
d
×
R
d
→
R
d
and a vector
s
∈
R
d
, we need to estimate the largest possible absolute value
g
(
n
) of an entry over all vectors obtained from applying
n
-
1
applications of
∗
to
n
instances of
s
. When the coefficients of
∗
are nonnegative and the entries of
s
are positive, the value
g
(
n
) is known to follow a growth rate
λ
=
lim
n
→
∞
g
(
n
)
n
. In this article, we prove that for such
∗
and
s
there exist nonnegative numbers
r
,
r
′
and positive numbers
a
,
a
′
so that for every
n
,
a
n
-
r
λ
n
≤
g
(
n
)
≤
a
′
n
r
′
λ
n
.
While proving the upper bound, we actually also provide another approach in proving the limit
λ
itself. The lower bound is proved by showing a certain form of submultiplicativity for
g
(
n
). Corollaries include a lower bound and an upper bound for
λ
, which are followed by a good estimation of
λ
when we have the value of
g
(
n
) for an
n
large enough.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-024-01336-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Group Theory and Generalizations ; Lattices ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Upper bounds</subject><ispartof>Journal of algebraic combinatorics, 2024, Vol.60 (1), p.273-293</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-683a28474f94a218de9f6f86074acdbecd392b95237feb85ced92b7054add8113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-024-01336-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-024-01336-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-04824364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, Vuong</creatorcontrib><title>Growth of bilinear maps II: bounds and orders</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>A good range of problems on trees can be described by the following general setting: Given a bilinear map
∗
:
R
d
×
R
d
→
R
d
and a vector
s
∈
R
d
, we need to estimate the largest possible absolute value
g
(
n
) of an entry over all vectors obtained from applying
n
-
1
applications of
∗
to
n
instances of
s
. When the coefficients of
∗
are nonnegative and the entries of
s
are positive, the value
g
(
n
) is known to follow a growth rate
λ
=
lim
n
→
∞
g
(
n
)
n
. In this article, we prove that for such
∗
and
s
there exist nonnegative numbers
r
,
r
′
and positive numbers
a
,
a
′
so that for every
n
,
a
n
-
r
λ
n
≤
g
(
n
)
≤
a
′
n
r
′
λ
n
.
While proving the upper bound, we actually also provide another approach in proving the limit
λ
itself. The lower bound is proved by showing a certain form of submultiplicativity for
g
(
n
). Corollaries include a lower bound and an upper bound for
λ
, which are followed by a good estimation of
λ
when we have the value of
g
(
n
) for an
n
large enough.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Upper bounds</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWAS4m-fMwkz10pWgsFN7oOmUnGTpmZ1KRV_PdOHdGdq8eFcy-PQ8glgxsGoG4TAw2MApcUmBAFxSMyYbniFBnyYzIB5DlFjXhKzlLaAABqlk8IXcTwsVtnoc7Kpm16b2PW2W3Klsu7rAz73qXM9i4L0fmYzslJbdvkL37ulLw83D_PH-nqabGcz1a0ElDsaKGF5VoqWaO0nGnnsS5qXYCStnKlr5xAXmLOhap9qfPKuyEryKV1TjMmpuR63F3b1mxj09n4aYJtzONsZdomdp0BqbkUhXw_0FcjvY3hbe_TzmzCPvbDg0aAVhwBcxgoPlJVDClFX_8OMzAHiWaUaAaJ5luiwaEkxlIa4P7Vx7_pf1pfhOBx4Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bui, Vuong</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2024</creationdate><title>Growth of bilinear maps II: bounds and orders</title><author>Bui, Vuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-683a28474f94a218de9f6f86074acdbecd392b95237feb85ced92b7054add8113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Vuong</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, Vuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of bilinear maps II: bounds and orders</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2024</date><risdate>2024</risdate><volume>60</volume><issue>1</issue><spage>273</spage><epage>293</epage><pages>273-293</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>A good range of problems on trees can be described by the following general setting: Given a bilinear map
∗
:
R
d
×
R
d
→
R
d
and a vector
s
∈
R
d
, we need to estimate the largest possible absolute value
g
(
n
) of an entry over all vectors obtained from applying
n
-
1
applications of
∗
to
n
instances of
s
. When the coefficients of
∗
are nonnegative and the entries of
s
are positive, the value
g
(
n
) is known to follow a growth rate
λ
=
lim
n
→
∞
g
(
n
)
n
. In this article, we prove that for such
∗
and
s
there exist nonnegative numbers
r
,
r
′
and positive numbers
a
,
a
′
so that for every
n
,
a
n
-
r
λ
n
≤
g
(
n
)
≤
a
′
n
r
′
λ
n
.
While proving the upper bound, we actually also provide another approach in proving the limit
λ
itself. The lower bound is proved by showing a certain form of submultiplicativity for
g
(
n
). Corollaries include a lower bound and an upper bound for
λ
, which are followed by a good estimation of
λ
when we have the value of
g
(
n
) for an
n
large enough.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-024-01336-9</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9899 |
ispartof | Journal of algebraic combinatorics, 2024, Vol.60 (1), p.273-293 |
issn | 0925-9899 1572-9192 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_lirmm_04824364v1 |
source | SpringerLink Journals |
subjects | Combinatorics Computer Science Convex and Discrete Geometry Group Theory and Generalizations Lattices Lower bounds Mathematics Mathematics and Statistics Order Ordered Algebraic Structures Upper bounds |
title | Growth of bilinear maps II: bounds and orders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20bilinear%20maps%20II:%20bounds%20and%20orders&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Bui,%20Vuong&rft.date=2024&rft.volume=60&rft.issue=1&rft.spage=273&rft.epage=293&rft.pages=273-293&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-024-01336-9&rft_dat=%3Cproquest_hal_p%3E3087290950%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087290950&rft_id=info:pmid/&rfr_iscdi=true |