Growth of bilinear maps II: bounds and orders

A good range of problems on trees can be described by the following general setting: Given a bilinear map ∗ : R d × R d → R d and a vector s ∈ R d , we need to estimate the largest possible absolute value g ( n ) of an entry over all vectors obtained from applying n - 1 applications of ∗ to n instan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2024, Vol.60 (1), p.273-293
1. Verfasser: Bui, Vuong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 293
container_issue 1
container_start_page 273
container_title Journal of algebraic combinatorics
container_volume 60
creator Bui, Vuong
description A good range of problems on trees can be described by the following general setting: Given a bilinear map ∗ : R d × R d → R d and a vector s ∈ R d , we need to estimate the largest possible absolute value g ( n ) of an entry over all vectors obtained from applying n - 1 applications of ∗ to n instances of s . When the coefficients of ∗ are nonnegative and the entries of s are positive, the value g ( n ) is known to follow a growth rate λ = lim n → ∞ g ( n ) n . In this article, we prove that for such ∗ and s there exist nonnegative numbers r , r ′ and positive numbers a , a ′ so that for every n , a n - r λ n ≤ g ( n ) ≤ a ′ n r ′ λ n . While proving the upper bound, we actually also provide another approach in proving the limit λ itself. The lower bound is proved by showing a certain form of submultiplicativity for g ( n ). Corollaries include a lower bound and an upper bound for λ , which are followed by a good estimation of λ when we have the value of g ( n ) for an n large enough.
doi_str_mv 10.1007/s10801-024-01336-9
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_04824364v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087290950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-683a28474f94a218de9f6f86074acdbecd392b95237feb85ced92b7054add8113</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWAS4m-fMwkz10pWgsFN7oOmUnGTpmZ1KRV_PdOHdGdq8eFcy-PQ8glgxsGoG4TAw2MApcUmBAFxSMyYbniFBnyYzIB5DlFjXhKzlLaAABqlk8IXcTwsVtnoc7Kpm16b2PW2W3Klsu7rAz73qXM9i4L0fmYzslJbdvkL37ulLw83D_PH-nqabGcz1a0ElDsaKGF5VoqWaO0nGnnsS5qXYCStnKlr5xAXmLOhap9qfPKuyEryKV1TjMmpuR63F3b1mxj09n4aYJtzONsZdomdp0BqbkUhXw_0FcjvY3hbe_TzmzCPvbDg0aAVhwBcxgoPlJVDClFX_8OMzAHiWaUaAaJ5luiwaEkxlIa4P7Vx7_pf1pfhOBx4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087290950</pqid></control><display><type>article</type><title>Growth of bilinear maps II: bounds and orders</title><source>SpringerLink Journals</source><creator>Bui, Vuong</creator><creatorcontrib>Bui, Vuong</creatorcontrib><description>A good range of problems on trees can be described by the following general setting: Given a bilinear map ∗ : R d × R d → R d and a vector s ∈ R d , we need to estimate the largest possible absolute value g ( n ) of an entry over all vectors obtained from applying n - 1 applications of ∗ to n instances of s . When the coefficients of ∗ are nonnegative and the entries of s are positive, the value g ( n ) is known to follow a growth rate λ = lim n → ∞ g ( n ) n . In this article, we prove that for such ∗ and s there exist nonnegative numbers r , r ′ and positive numbers a , a ′ so that for every n , a n - r λ n ≤ g ( n ) ≤ a ′ n r ′ λ n . While proving the upper bound, we actually also provide another approach in proving the limit λ itself. The lower bound is proved by showing a certain form of submultiplicativity for g ( n ). Corollaries include a lower bound and an upper bound for λ , which are followed by a good estimation of λ when we have the value of g ( n ) for an n large enough.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-024-01336-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Group Theory and Generalizations ; Lattices ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Upper bounds</subject><ispartof>Journal of algebraic combinatorics, 2024, Vol.60 (1), p.273-293</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-683a28474f94a218de9f6f86074acdbecd392b95237feb85ced92b7054add8113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-024-01336-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-024-01336-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-04824364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, Vuong</creatorcontrib><title>Growth of bilinear maps II: bounds and orders</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>A good range of problems on trees can be described by the following general setting: Given a bilinear map ∗ : R d × R d → R d and a vector s ∈ R d , we need to estimate the largest possible absolute value g ( n ) of an entry over all vectors obtained from applying n - 1 applications of ∗ to n instances of s . When the coefficients of ∗ are nonnegative and the entries of s are positive, the value g ( n ) is known to follow a growth rate λ = lim n → ∞ g ( n ) n . In this article, we prove that for such ∗ and s there exist nonnegative numbers r , r ′ and positive numbers a , a ′ so that for every n , a n - r λ n ≤ g ( n ) ≤ a ′ n r ′ λ n . While proving the upper bound, we actually also provide another approach in proving the limit λ itself. The lower bound is proved by showing a certain form of submultiplicativity for g ( n ). Corollaries include a lower bound and an upper bound for λ , which are followed by a good estimation of λ when we have the value of g ( n ) for an n large enough.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Upper bounds</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWAS4m-fMwkz10pWgsFN7oOmUnGTpmZ1KRV_PdOHdGdq8eFcy-PQ8glgxsGoG4TAw2MApcUmBAFxSMyYbniFBnyYzIB5DlFjXhKzlLaAABqlk8IXcTwsVtnoc7Kpm16b2PW2W3Klsu7rAz73qXM9i4L0fmYzslJbdvkL37ulLw83D_PH-nqabGcz1a0ElDsaKGF5VoqWaO0nGnnsS5qXYCStnKlr5xAXmLOhap9qfPKuyEryKV1TjMmpuR63F3b1mxj09n4aYJtzONsZdomdp0BqbkUhXw_0FcjvY3hbe_TzmzCPvbDg0aAVhwBcxgoPlJVDClFX_8OMzAHiWaUaAaJ5luiwaEkxlIa4P7Vx7_pf1pfhOBx4Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bui, Vuong</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2024</creationdate><title>Growth of bilinear maps II: bounds and orders</title><author>Bui, Vuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-683a28474f94a218de9f6f86074acdbecd392b95237feb85ced92b7054add8113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Vuong</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, Vuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of bilinear maps II: bounds and orders</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2024</date><risdate>2024</risdate><volume>60</volume><issue>1</issue><spage>273</spage><epage>293</epage><pages>273-293</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>A good range of problems on trees can be described by the following general setting: Given a bilinear map ∗ : R d × R d → R d and a vector s ∈ R d , we need to estimate the largest possible absolute value g ( n ) of an entry over all vectors obtained from applying n - 1 applications of ∗ to n instances of s . When the coefficients of ∗ are nonnegative and the entries of s are positive, the value g ( n ) is known to follow a growth rate λ = lim n → ∞ g ( n ) n . In this article, we prove that for such ∗ and s there exist nonnegative numbers r , r ′ and positive numbers a , a ′ so that for every n , a n - r λ n ≤ g ( n ) ≤ a ′ n r ′ λ n . While proving the upper bound, we actually also provide another approach in proving the limit λ itself. The lower bound is proved by showing a certain form of submultiplicativity for g ( n ). Corollaries include a lower bound and an upper bound for λ , which are followed by a good estimation of λ when we have the value of g ( n ) for an n large enough.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-024-01336-9</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2024, Vol.60 (1), p.273-293
issn 0925-9899
1572-9192
language eng
recordid cdi_hal_primary_oai_HAL_lirmm_04824364v1
source SpringerLink Journals
subjects Combinatorics
Computer Science
Convex and Discrete Geometry
Group Theory and Generalizations
Lattices
Lower bounds
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Upper bounds
title Growth of bilinear maps II: bounds and orders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20bilinear%20maps%20II:%20bounds%20and%20orders&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Bui,%20Vuong&rft.date=2024&rft.volume=60&rft.issue=1&rft.spage=273&rft.epage=293&rft.pages=273-293&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-024-01336-9&rft_dat=%3Cproquest_hal_p%3E3087290950%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087290950&rft_id=info:pmid/&rfr_iscdi=true