TSPred: A framework for nonstationary time series prediction

The nonstationary time series prediction is challenging since it demands knowledge of both data transformation and prediction methods. This paper presents TSPred, a framework for nonstationary time series prediction. It differs from the mainstream frameworks since it establishes a prediction process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2022-01, Vol.467, p.197-202
Hauptverfasser: Salles, Rebecca, Pacitti, Esther, Bezerra, Eduardo, Porto, Fabio, Ogasawara, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue
container_start_page 197
container_title Neurocomputing (Amsterdam)
container_volume 467
creator Salles, Rebecca
Pacitti, Esther
Bezerra, Eduardo
Porto, Fabio
Ogasawara, Eduardo
description The nonstationary time series prediction is challenging since it demands knowledge of both data transformation and prediction methods. This paper presents TSPred, a framework for nonstationary time series prediction. It differs from the mainstream frameworks since it establishes a prediction process that seamlessly integrates nonstationary time series transformations with state-of-the-art statistical and machine learning methods. It is made available as an R-package, which provides functions for defining and conducting time series prediction, including data pre(post) processing, decomposition, modeling, prediction, and accuracy assessment. Besides, TSPred enables user-defined methods, which significantly expands the applicability of the framework.
doi_str_mv 10.1016/j.neucom.2021.09.067
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_03452170v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231221014454</els_id><sourcerecordid>oai_HAL_lirmm_03452170v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-67ace5219b9a9ad352ae7b76de1296fb94a93027c466d20e8d283ffa8b4deffe3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMXsZcY8pnmICKWoFQoK1nXIZG4wtTMpyVjx35sy4tLVXdxzzr3nQ-iS4Ipgwq83VQ-fNnQVxZRUWFWYiyM0IVLQUlLJj9EEKzorKSP0FJ2ltMGYCELVBN2uX18itDfFvHDRdPAV4kfhQiz60KfBDD70Jn4Xg--gSBA9pGKX9d4eNufoxJltgovfOUVvD_frxbJcPT8-Lear0jIph5ILY2FGiWqUUaZlM2pANIK3kF_grlG1UQxTYWvOW4pBtlQy54xs6hacAzZFV2Puu9nqXfRdfkkH4_VyvtJbH7tOY1bnCwLvSVbXo9rGkFIE92chWB946Y0eeekDL42Vzryy7W60QW6y9xB1sh56m8tGsINug_8_4AfDnnYX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TSPred: A framework for nonstationary time series prediction</title><source>Elsevier ScienceDirect Journals</source><creator>Salles, Rebecca ; Pacitti, Esther ; Bezerra, Eduardo ; Porto, Fabio ; Ogasawara, Eduardo</creator><creatorcontrib>Salles, Rebecca ; Pacitti, Esther ; Bezerra, Eduardo ; Porto, Fabio ; Ogasawara, Eduardo</creatorcontrib><description>The nonstationary time series prediction is challenging since it demands knowledge of both data transformation and prediction methods. This paper presents TSPred, a framework for nonstationary time series prediction. It differs from the mainstream frameworks since it establishes a prediction process that seamlessly integrates nonstationary time series transformations with state-of-the-art statistical and machine learning methods. It is made available as an R-package, which provides functions for defining and conducting time series prediction, including data pre(post) processing, decomposition, modeling, prediction, and accuracy assessment. Besides, TSPred enables user-defined methods, which significantly expands the applicability of the framework.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2021.09.067</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Machine learning ; Nonstationarity ; Prediction ; Preprocessing ; Time series ; Transform</subject><ispartof>Neurocomputing (Amsterdam), 2022-01, Vol.467, p.197-202</ispartof><rights>2021 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-67ace5219b9a9ad352ae7b76de1296fb94a93027c466d20e8d283ffa8b4deffe3</citedby><cites>FETCH-LOGICAL-c388t-67ace5219b9a9ad352ae7b76de1296fb94a93027c466d20e8d283ffa8b4deffe3</cites><orcidid>0000-0002-0466-0626 ; 0000-0002-4597-4832 ; 0000-0002-1001-3839 ; 0000-0003-1370-9943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231221014454$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-03452170$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Salles, Rebecca</creatorcontrib><creatorcontrib>Pacitti, Esther</creatorcontrib><creatorcontrib>Bezerra, Eduardo</creatorcontrib><creatorcontrib>Porto, Fabio</creatorcontrib><creatorcontrib>Ogasawara, Eduardo</creatorcontrib><title>TSPred: A framework for nonstationary time series prediction</title><title>Neurocomputing (Amsterdam)</title><description>The nonstationary time series prediction is challenging since it demands knowledge of both data transformation and prediction methods. This paper presents TSPred, a framework for nonstationary time series prediction. It differs from the mainstream frameworks since it establishes a prediction process that seamlessly integrates nonstationary time series transformations with state-of-the-art statistical and machine learning methods. It is made available as an R-package, which provides functions for defining and conducting time series prediction, including data pre(post) processing, decomposition, modeling, prediction, and accuracy assessment. Besides, TSPred enables user-defined methods, which significantly expands the applicability of the framework.</description><subject>Computer Science</subject><subject>Machine learning</subject><subject>Nonstationarity</subject><subject>Prediction</subject><subject>Preprocessing</subject><subject>Time series</subject><subject>Transform</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wMXsZcY8pnmICKWoFQoK1nXIZG4wtTMpyVjx35sy4tLVXdxzzr3nQ-iS4Ipgwq83VQ-fNnQVxZRUWFWYiyM0IVLQUlLJj9EEKzorKSP0FJ2ltMGYCELVBN2uX18itDfFvHDRdPAV4kfhQiz60KfBDD70Jn4Xg--gSBA9pGKX9d4eNufoxJltgovfOUVvD_frxbJcPT8-Lear0jIph5ILY2FGiWqUUaZlM2pANIK3kF_grlG1UQxTYWvOW4pBtlQy54xs6hacAzZFV2Puu9nqXfRdfkkH4_VyvtJbH7tOY1bnCwLvSVbXo9rGkFIE92chWB946Y0eeekDL42Vzryy7W60QW6y9xB1sh56m8tGsINug_8_4AfDnnYX</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Salles, Rebecca</creator><creator>Pacitti, Esther</creator><creator>Bezerra, Eduardo</creator><creator>Porto, Fabio</creator><creator>Ogasawara, Eduardo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0466-0626</orcidid><orcidid>https://orcid.org/0000-0002-4597-4832</orcidid><orcidid>https://orcid.org/0000-0002-1001-3839</orcidid><orcidid>https://orcid.org/0000-0003-1370-9943</orcidid></search><sort><creationdate>20220107</creationdate><title>TSPred: A framework for nonstationary time series prediction</title><author>Salles, Rebecca ; Pacitti, Esther ; Bezerra, Eduardo ; Porto, Fabio ; Ogasawara, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-67ace5219b9a9ad352ae7b76de1296fb94a93027c466d20e8d283ffa8b4deffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Machine learning</topic><topic>Nonstationarity</topic><topic>Prediction</topic><topic>Preprocessing</topic><topic>Time series</topic><topic>Transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salles, Rebecca</creatorcontrib><creatorcontrib>Pacitti, Esther</creatorcontrib><creatorcontrib>Bezerra, Eduardo</creatorcontrib><creatorcontrib>Porto, Fabio</creatorcontrib><creatorcontrib>Ogasawara, Eduardo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salles, Rebecca</au><au>Pacitti, Esther</au><au>Bezerra, Eduardo</au><au>Porto, Fabio</au><au>Ogasawara, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSPred: A framework for nonstationary time series prediction</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2022-01-07</date><risdate>2022</risdate><volume>467</volume><spage>197</spage><epage>202</epage><pages>197-202</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>The nonstationary time series prediction is challenging since it demands knowledge of both data transformation and prediction methods. This paper presents TSPred, a framework for nonstationary time series prediction. It differs from the mainstream frameworks since it establishes a prediction process that seamlessly integrates nonstationary time series transformations with state-of-the-art statistical and machine learning methods. It is made available as an R-package, which provides functions for defining and conducting time series prediction, including data pre(post) processing, decomposition, modeling, prediction, and accuracy assessment. Besides, TSPred enables user-defined methods, which significantly expands the applicability of the framework.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2021.09.067</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0466-0626</orcidid><orcidid>https://orcid.org/0000-0002-4597-4832</orcidid><orcidid>https://orcid.org/0000-0002-1001-3839</orcidid><orcidid>https://orcid.org/0000-0003-1370-9943</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2022-01, Vol.467, p.197-202
issn 0925-2312
1872-8286
language eng
recordid cdi_hal_primary_oai_HAL_lirmm_03452170v1
source Elsevier ScienceDirect Journals
subjects Computer Science
Machine learning
Nonstationarity
Prediction
Preprocessing
Time series
Transform
title TSPred: A framework for nonstationary time series prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSPred:%20A%20framework%20for%20nonstationary%20time%20series%20prediction&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Salles,%20Rebecca&rft.date=2022-01-07&rft.volume=467&rft.spage=197&rft.epage=202&rft.pages=197-202&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2021.09.067&rft_dat=%3Chal_cross%3Eoai_HAL_lirmm_03452170v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0925231221014454&rfr_iscdi=true