Parameterized complexity of finding a spanning tree with minimum reload cost diameter

We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2020-04, Vol.75 (3), p.259-277
Hauptverfasser: Baste, Julien, Gözüpek, Didem, Paul, Christophe, Sau, Ignasi, Shalom, Mordechai, Thilikos, Dimitrios M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue 3
container_start_page 259
container_title Networks
container_volume 75
creator Baste, Julien
Gözüpek, Didem
Paul, Christophe
Sau, Ignasi
Shalom, Mordechai
Thilikos, Dimitrios M.
description We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the Diameter‐Tree problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Δ of the input graph. We prove that Diameter‐Tree is para‐NP‐hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove Diameter‐Tree to be NP‐hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan proved that the problem can be solved in polynomial time on graphs with Δ = 3, and Galbiati proved that it is NP‐hard if Δ = 4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP‐hard if Δ = 3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that Diameter‐Tree is in XP and W[1]‐hard parameterized by the treewidth plus Δ.
doi_str_mv 10.1002/net.21923
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_02989889v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375431722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3683-236738306244718be695732782c621094f0a82fd4906d85b0aaed9767cca15b33</originalsourceid><addsrcrecordid>eNp1kMFLwzAYxYMoOKcH_4OAJ5FuX5K2SY5jbE4Y6mE7h6xNXUbT1qRzzr_ezoo3T9-D7_cej4fQLYERAaDjyrQjSiRlZ2hAQPIIgPFzNOh-ImIQJ5foKoQdACEJEQO0ftVeO9Mab79MjrPaNaX5tO0R1wUubJXb6g1rHBpdVSfZemPwwbZb7Gxl3d5hb8pan5yhxbnts67RRaHLYG5-7xCt57PVdBEtXx6fppNllLFUsIiylDPBIKVxzInYmFQmnFEuaJbSrn1cgBa0yGMJaS6SDWhtcslTnmWaJBvGhuihz93qUjXeOu2PqtZWLSZLVVrvnAIqhRRCfpCOvuvpxtfvexNatav3vuoKKsp4EjPCKe2o-57KfB2CN8VfMAF12lh1G6ufjTt23LMHW5rj_6B6nq16xzerCnwC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375431722</pqid></control><display><type>article</type><title>Parameterized complexity of finding a spanning tree with minimum reload cost diameter</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baste, Julien ; Gözüpek, Didem ; Paul, Christophe ; Sau, Ignasi ; Shalom, Mordechai ; Thilikos, Dimitrios M.</creator><creatorcontrib>Baste, Julien ; Gözüpek, Didem ; Paul, Christophe ; Sau, Ignasi ; Shalom, Mordechai ; Thilikos, Dimitrios M.</creatorcontrib><description>We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the Diameter‐Tree problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Δ of the input graph. We prove that Diameter‐Tree is para‐NP‐hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove Diameter‐Tree to be NP‐hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan proved that the problem can be solved in polynomial time on graphs with Δ = 3, and Galbiati proved that it is NP‐hard if Δ = 4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP‐hard if Δ = 3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that Diameter‐Tree is in XP and W[1]‐hard parameterized by the treewidth plus Δ.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.21923</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Complexity ; Costs ; dynamic programming ; FPT algorithm ; Graph coloring ; Graph theory ; Graphs ; Mathematics ; minimum diameter spanning tree ; Parameterization ; parameterized complexity ; Parameters ; Polynomials ; reload cost problems ; treewidth</subject><ispartof>Networks, 2020-04, Vol.75 (3), p.259-277</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3683-236738306244718be695732782c621094f0a82fd4906d85b0aaed9767cca15b33</citedby><cites>FETCH-LOGICAL-c3683-236738306244718be695732782c621094f0a82fd4906d85b0aaed9767cca15b33</cites><orcidid>0000-0001-8450-1897 ; 0000-0002-8981-9287 ; 0000-0003-0470-1800 ; 0000-0001-6519-975X ; 0000-0002-7869-0959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.21923$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.21923$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-02989889$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baste, Julien</creatorcontrib><creatorcontrib>Gözüpek, Didem</creatorcontrib><creatorcontrib>Paul, Christophe</creatorcontrib><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>Shalom, Mordechai</creatorcontrib><creatorcontrib>Thilikos, Dimitrios M.</creatorcontrib><title>Parameterized complexity of finding a spanning tree with minimum reload cost diameter</title><title>Networks</title><description>We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the Diameter‐Tree problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Δ of the input graph. We prove that Diameter‐Tree is para‐NP‐hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove Diameter‐Tree to be NP‐hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan proved that the problem can be solved in polynomial time on graphs with Δ = 3, and Galbiati proved that it is NP‐hard if Δ = 4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP‐hard if Δ = 3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that Diameter‐Tree is in XP and W[1]‐hard parameterized by the treewidth plus Δ.</description><subject>Complexity</subject><subject>Costs</subject><subject>dynamic programming</subject><subject>FPT algorithm</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>minimum diameter spanning tree</subject><subject>Parameterization</subject><subject>parameterized complexity</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>reload cost problems</subject><subject>treewidth</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAYxYMoOKcH_4OAJ5FuX5K2SY5jbE4Y6mE7h6xNXUbT1qRzzr_ezoo3T9-D7_cej4fQLYERAaDjyrQjSiRlZ2hAQPIIgPFzNOh-ImIQJ5foKoQdACEJEQO0ftVeO9Mab79MjrPaNaX5tO0R1wUubJXb6g1rHBpdVSfZemPwwbZb7Gxl3d5hb8pan5yhxbnts67RRaHLYG5-7xCt57PVdBEtXx6fppNllLFUsIiylDPBIKVxzInYmFQmnFEuaJbSrn1cgBa0yGMJaS6SDWhtcslTnmWaJBvGhuihz93qUjXeOu2PqtZWLSZLVVrvnAIqhRRCfpCOvuvpxtfvexNatav3vuoKKsp4EjPCKe2o-57KfB2CN8VfMAF12lh1G6ufjTt23LMHW5rj_6B6nq16xzerCnwC</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Baste, Julien</creator><creator>Gözüpek, Didem</creator><creator>Paul, Christophe</creator><creator>Sau, Ignasi</creator><creator>Shalom, Mordechai</creator><creator>Thilikos, Dimitrios M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8450-1897</orcidid><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0003-0470-1800</orcidid><orcidid>https://orcid.org/0000-0001-6519-975X</orcidid><orcidid>https://orcid.org/0000-0002-7869-0959</orcidid></search><sort><creationdate>202004</creationdate><title>Parameterized complexity of finding a spanning tree with minimum reload cost diameter</title><author>Baste, Julien ; Gözüpek, Didem ; Paul, Christophe ; Sau, Ignasi ; Shalom, Mordechai ; Thilikos, Dimitrios M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3683-236738306244718be695732782c621094f0a82fd4906d85b0aaed9767cca15b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Complexity</topic><topic>Costs</topic><topic>dynamic programming</topic><topic>FPT algorithm</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>minimum diameter spanning tree</topic><topic>Parameterization</topic><topic>parameterized complexity</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>reload cost problems</topic><topic>treewidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baste, Julien</creatorcontrib><creatorcontrib>Gözüpek, Didem</creatorcontrib><creatorcontrib>Paul, Christophe</creatorcontrib><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>Shalom, Mordechai</creatorcontrib><creatorcontrib>Thilikos, Dimitrios M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baste, Julien</au><au>Gözüpek, Didem</au><au>Paul, Christophe</au><au>Sau, Ignasi</au><au>Shalom, Mordechai</au><au>Thilikos, Dimitrios M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterized complexity of finding a spanning tree with minimum reload cost diameter</atitle><jtitle>Networks</jtitle><date>2020-04</date><risdate>2020</risdate><volume>75</volume><issue>3</issue><spage>259</spage><epage>277</epage><pages>259-277</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><abstract>We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the Diameter‐Tree problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Δ of the input graph. We prove that Diameter‐Tree is para‐NP‐hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove Diameter‐Tree to be NP‐hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan proved that the problem can be solved in polynomial time on graphs with Δ = 3, and Galbiati proved that it is NP‐hard if Δ = 4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP‐hard if Δ = 3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that Diameter‐Tree is in XP and W[1]‐hard parameterized by the treewidth plus Δ.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/net.21923</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8450-1897</orcidid><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0003-0470-1800</orcidid><orcidid>https://orcid.org/0000-0001-6519-975X</orcidid><orcidid>https://orcid.org/0000-0002-7869-0959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 2020-04, Vol.75 (3), p.259-277
issn 0028-3045
1097-0037
language eng
recordid cdi_hal_primary_oai_HAL_lirmm_02989889v1
source Wiley Online Library Journals Frontfile Complete
subjects Complexity
Costs
dynamic programming
FPT algorithm
Graph coloring
Graph theory
Graphs
Mathematics
minimum diameter spanning tree
Parameterization
parameterized complexity
Parameters
Polynomials
reload cost problems
treewidth
title Parameterized complexity of finding a spanning tree with minimum reload cost diameter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterized%20complexity%20of%20finding%20a%20spanning%20tree%20with%20minimum%20reload%20cost%20diameter&rft.jtitle=Networks&rft.au=Baste,%20Julien&rft.date=2020-04&rft.volume=75&rft.issue=3&rft.spage=259&rft.epage=277&rft.pages=259-277&rft.issn=0028-3045&rft.eissn=1097-0037&rft_id=info:doi/10.1002/net.21923&rft_dat=%3Cproquest_hal_p%3E2375431722%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375431722&rft_id=info:pmid/&rfr_iscdi=true