Parameterized complexity of finding a spanning tree with minimum reload cost diameter
We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The...
Gespeichert in:
Veröffentlicht in: | Networks 2020-04, Vol.75 (3), p.259-277 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 277 |
---|---|
container_issue | 3 |
container_start_page | 259 |
container_title | Networks |
container_volume | 75 |
creator | Baste, Julien Gözüpek, Didem Paul, Christophe Sau, Ignasi Shalom, Mordechai Thilikos, Dimitrios M. |
description | We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the Diameter‐Tree problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Δ of the input graph. We prove that Diameter‐Tree is para‐NP‐hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove Diameter‐Tree to be NP‐hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan proved that the problem can be solved in polynomial time on graphs with Δ = 3, and Galbiati proved that it is NP‐hard if Δ = 4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP‐hard if Δ = 3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that Diameter‐Tree is in XP and W[1]‐hard parameterized by the treewidth plus Δ. |
doi_str_mv | 10.1002/net.21923 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_02989889v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375431722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3683-236738306244718be695732782c621094f0a82fd4906d85b0aaed9767cca15b33</originalsourceid><addsrcrecordid>eNp1kMFLwzAYxYMoOKcH_4OAJ5FuX5K2SY5jbE4Y6mE7h6xNXUbT1qRzzr_ezoo3T9-D7_cej4fQLYERAaDjyrQjSiRlZ2hAQPIIgPFzNOh-ImIQJ5foKoQdACEJEQO0ftVeO9Mab79MjrPaNaX5tO0R1wUubJXb6g1rHBpdVSfZemPwwbZb7Gxl3d5hb8pan5yhxbnts67RRaHLYG5-7xCt57PVdBEtXx6fppNllLFUsIiylDPBIKVxzInYmFQmnFEuaJbSrn1cgBa0yGMJaS6SDWhtcslTnmWaJBvGhuihz93qUjXeOu2PqtZWLSZLVVrvnAIqhRRCfpCOvuvpxtfvexNatav3vuoKKsp4EjPCKe2o-57KfB2CN8VfMAF12lh1G6ufjTt23LMHW5rj_6B6nq16xzerCnwC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375431722</pqid></control><display><type>article</type><title>Parameterized complexity of finding a spanning tree with minimum reload cost diameter</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baste, Julien ; Gözüpek, Didem ; Paul, Christophe ; Sau, Ignasi ; Shalom, Mordechai ; Thilikos, Dimitrios M.</creator><creatorcontrib>Baste, Julien ; Gözüpek, Didem ; Paul, Christophe ; Sau, Ignasi ; Shalom, Mordechai ; Thilikos, Dimitrios M.</creatorcontrib><description>We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the Diameter‐Tree problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Δ of the input graph. We prove that Diameter‐Tree is para‐NP‐hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove Diameter‐Tree to be NP‐hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan proved that the problem can be solved in polynomial time on graphs with Δ = 3, and Galbiati proved that it is NP‐hard if Δ = 4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP‐hard if Δ = 3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that Diameter‐Tree is in XP and W[1]‐hard parameterized by the treewidth plus Δ.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.21923</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Complexity ; Costs ; dynamic programming ; FPT algorithm ; Graph coloring ; Graph theory ; Graphs ; Mathematics ; minimum diameter spanning tree ; Parameterization ; parameterized complexity ; Parameters ; Polynomials ; reload cost problems ; treewidth</subject><ispartof>Networks, 2020-04, Vol.75 (3), p.259-277</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3683-236738306244718be695732782c621094f0a82fd4906d85b0aaed9767cca15b33</citedby><cites>FETCH-LOGICAL-c3683-236738306244718be695732782c621094f0a82fd4906d85b0aaed9767cca15b33</cites><orcidid>0000-0001-8450-1897 ; 0000-0002-8981-9287 ; 0000-0003-0470-1800 ; 0000-0001-6519-975X ; 0000-0002-7869-0959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.21923$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.21923$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-02989889$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baste, Julien</creatorcontrib><creatorcontrib>Gözüpek, Didem</creatorcontrib><creatorcontrib>Paul, Christophe</creatorcontrib><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>Shalom, Mordechai</creatorcontrib><creatorcontrib>Thilikos, Dimitrios M.</creatorcontrib><title>Parameterized complexity of finding a spanning tree with minimum reload cost diameter</title><title>Networks</title><description>We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the Diameter‐Tree problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Δ of the input graph. We prove that Diameter‐Tree is para‐NP‐hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove Diameter‐Tree to be NP‐hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan proved that the problem can be solved in polynomial time on graphs with Δ = 3, and Galbiati proved that it is NP‐hard if Δ = 4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP‐hard if Δ = 3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that Diameter‐Tree is in XP and W[1]‐hard parameterized by the treewidth plus Δ.</description><subject>Complexity</subject><subject>Costs</subject><subject>dynamic programming</subject><subject>FPT algorithm</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>minimum diameter spanning tree</subject><subject>Parameterization</subject><subject>parameterized complexity</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>reload cost problems</subject><subject>treewidth</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAYxYMoOKcH_4OAJ5FuX5K2SY5jbE4Y6mE7h6xNXUbT1qRzzr_ezoo3T9-D7_cej4fQLYERAaDjyrQjSiRlZ2hAQPIIgPFzNOh-ImIQJ5foKoQdACEJEQO0ftVeO9Mab79MjrPaNaX5tO0R1wUubJXb6g1rHBpdVSfZemPwwbZb7Gxl3d5hb8pan5yhxbnts67RRaHLYG5-7xCt57PVdBEtXx6fppNllLFUsIiylDPBIKVxzInYmFQmnFEuaJbSrn1cgBa0yGMJaS6SDWhtcslTnmWaJBvGhuihz93qUjXeOu2PqtZWLSZLVVrvnAIqhRRCfpCOvuvpxtfvexNatav3vuoKKsp4EjPCKe2o-57KfB2CN8VfMAF12lh1G6ufjTt23LMHW5rj_6B6nq16xzerCnwC</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Baste, Julien</creator><creator>Gözüpek, Didem</creator><creator>Paul, Christophe</creator><creator>Sau, Ignasi</creator><creator>Shalom, Mordechai</creator><creator>Thilikos, Dimitrios M.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8450-1897</orcidid><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0003-0470-1800</orcidid><orcidid>https://orcid.org/0000-0001-6519-975X</orcidid><orcidid>https://orcid.org/0000-0002-7869-0959</orcidid></search><sort><creationdate>202004</creationdate><title>Parameterized complexity of finding a spanning tree with minimum reload cost diameter</title><author>Baste, Julien ; Gözüpek, Didem ; Paul, Christophe ; Sau, Ignasi ; Shalom, Mordechai ; Thilikos, Dimitrios M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3683-236738306244718be695732782c621094f0a82fd4906d85b0aaed9767cca15b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Complexity</topic><topic>Costs</topic><topic>dynamic programming</topic><topic>FPT algorithm</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>minimum diameter spanning tree</topic><topic>Parameterization</topic><topic>parameterized complexity</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>reload cost problems</topic><topic>treewidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baste, Julien</creatorcontrib><creatorcontrib>Gözüpek, Didem</creatorcontrib><creatorcontrib>Paul, Christophe</creatorcontrib><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>Shalom, Mordechai</creatorcontrib><creatorcontrib>Thilikos, Dimitrios M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baste, Julien</au><au>Gözüpek, Didem</au><au>Paul, Christophe</au><au>Sau, Ignasi</au><au>Shalom, Mordechai</au><au>Thilikos, Dimitrios M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterized complexity of finding a spanning tree with minimum reload cost diameter</atitle><jtitle>Networks</jtitle><date>2020-04</date><risdate>2020</risdate><volume>75</volume><issue>3</issue><spage>259</spage><epage>277</epage><pages>259-277</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><abstract>We study the minimum diameter spanning tree problem under the reload cost model (Diameter‐Tree for short) introduced by Wirth and Steffan. In this problem, given an undirected edge‐colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the Diameter‐Tree problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Δ of the input graph. We prove that Diameter‐Tree is para‐NP‐hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove Diameter‐Tree to be NP‐hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan proved that the problem can be solved in polynomial time on graphs with Δ = 3, and Galbiati proved that it is NP‐hard if Δ = 4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP‐hard if Δ = 3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that Diameter‐Tree is in XP and W[1]‐hard parameterized by the treewidth plus Δ.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/net.21923</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8450-1897</orcidid><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0003-0470-1800</orcidid><orcidid>https://orcid.org/0000-0001-6519-975X</orcidid><orcidid>https://orcid.org/0000-0002-7869-0959</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3045 |
ispartof | Networks, 2020-04, Vol.75 (3), p.259-277 |
issn | 0028-3045 1097-0037 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_lirmm_02989889v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Complexity Costs dynamic programming FPT algorithm Graph coloring Graph theory Graphs Mathematics minimum diameter spanning tree Parameterization parameterized complexity Parameters Polynomials reload cost problems treewidth |
title | Parameterized complexity of finding a spanning tree with minimum reload cost diameter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterized%20complexity%20of%20finding%20a%20spanning%20tree%20with%20minimum%20reload%20cost%20diameter&rft.jtitle=Networks&rft.au=Baste,%20Julien&rft.date=2020-04&rft.volume=75&rft.issue=3&rft.spage=259&rft.epage=277&rft.pages=259-277&rft.issn=0028-3045&rft.eissn=1097-0037&rft_id=info:doi/10.1002/net.21923&rft_dat=%3Cproquest_hal_p%3E2375431722%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375431722&rft_id=info:pmid/&rfr_iscdi=true |