Algorithmic identification of probabilities is hard

Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 2018-08, Vol.95, p.98-108
Hauptverfasser: Bienvenu, Laurent, Figueira, Santiago, Monin, Benoit, Shen, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue
container_start_page 98
container_title Journal of computer and system sciences
container_volume 95
creator Bienvenu, Laurent
Figueira, Santiago
Monin, Benoit
Shen, Alexander
description Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume that p is a computable real, and we have to eventually guess the program that computes p. We show that this cannot be done computably, and extend this result to more general computable distributions. We also provide a weak positive result showing that looking at a sequence X generated according to some computable probability measure, we can guess a sequence of algorithms that, starting from some point, compute a measure that makes X Martin-Löf random. •Inductive inference of probability measures from their random elements is studied.•We disprove the main claim of the original paper by Vitanyi and Chater.•We indeed show that learning cannot be achieved if we require bounded deficiency.•If we remove the bounded deficiency requirement, we do get a weak positive result.
doi_str_mv 10.1016/j.jcss.2018.01.002
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_01803441v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000018301193</els_id><sourcerecordid>S0022000018301193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-d1e7f7ab2ab79a86b9b93f5fdd81a569f875fbd3d48ccd4a8ee1f886cb2d67ae3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNPeZddMsh9Z8FKKWqHgRc8hn3aW3aYkS8F_b0rFo3MZGN5n4H0IuQdaAYX2cagGk1LFKIiKQkUpuyALoD0tWcfqS7LIF1bSPNfkJqWBUoCm5QvCV-NXiDjvJjQFWref0aNRM4Z9EXxxiEErjSPO6FKBqdipaG_JlVdjcne_e0k-X54_1pty-_76tl5tS8MFnUsLrvOd0kzprlei1b3uuW-8tQJU0_ZedI3XlttaGGNrJZwDL0RrNLNtpxxfkofz350a5SHipOK3DArlZrWVI8Zpkrkv5XUNR8hpdk6bGFKKzv8hQOVJkhzkSZI8ScqgzEoy9HSGXO5xRBdlMuj2xlmMzszSBvwP_wGkK3D0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algorithmic identification of probabilities is hard</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bienvenu, Laurent ; Figueira, Santiago ; Monin, Benoit ; Shen, Alexander</creator><creatorcontrib>Bienvenu, Laurent ; Figueira, Santiago ; Monin, Benoit ; Shen, Alexander</creatorcontrib><description>Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume that p is a computable real, and we have to eventually guess the program that computes p. We show that this cannot be done computably, and extend this result to more general computable distributions. We also provide a weak positive result showing that looking at a sequence X generated according to some computable probability measure, we can guess a sequence of algorithms that, starting from some point, compute a measure that makes X Martin-Löf random. •Inductive inference of probability measures from their random elements is studied.•We disprove the main claim of the original paper by Vitanyi and Chater.•We indeed show that learning cannot be achieved if we require bounded deficiency.•If we remove the bounded deficiency requirement, we do get a weak positive result.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2018.01.002</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithmic learning theory ; Algorithmic randomness ; Computer Science ; Information Theory ; Logic ; Mathematics ; Probability</subject><ispartof>Journal of computer and system sciences, 2018-08, Vol.95, p.98-108</ispartof><rights>2018 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-d1e7f7ab2ab79a86b9b93f5fdd81a569f875fbd3d48ccd4a8ee1f886cb2d67ae3</citedby><cites>FETCH-LOGICAL-c380t-d1e7f7ab2ab79a86b9b93f5fdd81a569f875fbd3d48ccd4a8ee1f886cb2d67ae3</cites><orcidid>0000-0001-8605-7734 ; 0000-0002-9638-3362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022000018301193$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-01803441$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bienvenu, Laurent</creatorcontrib><creatorcontrib>Figueira, Santiago</creatorcontrib><creatorcontrib>Monin, Benoit</creatorcontrib><creatorcontrib>Shen, Alexander</creatorcontrib><title>Algorithmic identification of probabilities is hard</title><title>Journal of computer and system sciences</title><description>Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume that p is a computable real, and we have to eventually guess the program that computes p. We show that this cannot be done computably, and extend this result to more general computable distributions. We also provide a weak positive result showing that looking at a sequence X generated according to some computable probability measure, we can guess a sequence of algorithms that, starting from some point, compute a measure that makes X Martin-Löf random. •Inductive inference of probability measures from their random elements is studied.•We disprove the main claim of the original paper by Vitanyi and Chater.•We indeed show that learning cannot be achieved if we require bounded deficiency.•If we remove the bounded deficiency requirement, we do get a weak positive result.</description><subject>Algorithmic learning theory</subject><subject>Algorithmic randomness</subject><subject>Computer Science</subject><subject>Information Theory</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Probability</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNPeZddMsh9Z8FKKWqHgRc8hn3aW3aYkS8F_b0rFo3MZGN5n4H0IuQdaAYX2cagGk1LFKIiKQkUpuyALoD0tWcfqS7LIF1bSPNfkJqWBUoCm5QvCV-NXiDjvJjQFWref0aNRM4Z9EXxxiEErjSPO6FKBqdipaG_JlVdjcne_e0k-X54_1pty-_76tl5tS8MFnUsLrvOd0kzprlei1b3uuW-8tQJU0_ZedI3XlttaGGNrJZwDL0RrNLNtpxxfkofz350a5SHipOK3DArlZrWVI8Zpkrkv5XUNR8hpdk6bGFKKzv8hQOVJkhzkSZI8ScqgzEoy9HSGXO5xRBdlMuj2xlmMzszSBvwP_wGkK3D0</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Bienvenu, Laurent</creator><creator>Figueira, Santiago</creator><creator>Monin, Benoit</creator><creator>Shen, Alexander</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8605-7734</orcidid><orcidid>https://orcid.org/0000-0002-9638-3362</orcidid></search><sort><creationdate>20180801</creationdate><title>Algorithmic identification of probabilities is hard</title><author>Bienvenu, Laurent ; Figueira, Santiago ; Monin, Benoit ; Shen, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-d1e7f7ab2ab79a86b9b93f5fdd81a569f875fbd3d48ccd4a8ee1f886cb2d67ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithmic learning theory</topic><topic>Algorithmic randomness</topic><topic>Computer Science</topic><topic>Information Theory</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bienvenu, Laurent</creatorcontrib><creatorcontrib>Figueira, Santiago</creatorcontrib><creatorcontrib>Monin, Benoit</creatorcontrib><creatorcontrib>Shen, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bienvenu, Laurent</au><au>Figueira, Santiago</au><au>Monin, Benoit</au><au>Shen, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic identification of probabilities is hard</atitle><jtitle>Journal of computer and system sciences</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>95</volume><spage>98</spage><epage>108</epage><pages>98-108</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume that p is a computable real, and we have to eventually guess the program that computes p. We show that this cannot be done computably, and extend this result to more general computable distributions. We also provide a weak positive result showing that looking at a sequence X generated according to some computable probability measure, we can guess a sequence of algorithms that, starting from some point, compute a measure that makes X Martin-Löf random. •Inductive inference of probability measures from their random elements is studied.•We disprove the main claim of the original paper by Vitanyi and Chater.•We indeed show that learning cannot be achieved if we require bounded deficiency.•If we remove the bounded deficiency requirement, we do get a weak positive result.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2018.01.002</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8605-7734</orcidid><orcidid>https://orcid.org/0000-0002-9638-3362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 2018-08, Vol.95, p.98-108
issn 0022-0000
1090-2724
language eng
recordid cdi_hal_primary_oai_HAL_lirmm_01803441v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithmic learning theory
Algorithmic randomness
Computer Science
Information Theory
Logic
Mathematics
Probability
title Algorithmic identification of probabilities is hard
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20identification%20of%20probabilities%20is%20hard&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Bienvenu,%20Laurent&rft.date=2018-08-01&rft.volume=95&rft.spage=98&rft.epage=108&rft.pages=98-108&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2018.01.002&rft_dat=%3Celsevier_hal_p%3ES0022000018301193%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022000018301193&rfr_iscdi=true