Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation
Objective. Multipolar cuff electrode can selectively stimulate areas of peripheral nerves and therefore enable to control independent functions. However, the branching and fascicularization are known for a limited set of nerves and the specific organization remains subject-dependent. This paper pres...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2018-08, Vol.15 (4), p.046018-046018 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 046018 |
---|---|
container_issue | 4 |
container_start_page | 046018 |
container_title | Journal of neural engineering |
container_volume | 15 |
creator | Dali, Mélissa Rossel, Olivier Andreu, David Laporte, Laure Hernández, Alfredo Laforet, Jérémy Marijon, Eloi Hagège, Albert Clerc, Maureen Henry, Christine Guiraud, David |
description | Objective. Multipolar cuff electrode can selectively stimulate areas of peripheral nerves and therefore enable to control independent functions. However, the branching and fascicularization are known for a limited set of nerves and the specific organization remains subject-dependent. This paper presents general modeling and optimization methods in the context of multipolar stimulation using a cuff electrode without a priori knowledge of the nerve structure. Vagus nerve stimulation experiments based on the optimization results were then investigated. Approach. The model consisted of two independent components: a lead field matrix representing the transfer function from the applied current to the extracellular voltage present on the nodes of Ranvier along each axon, and a linear activation model. The optimization process consisted in finding the best current repartition (ratios) to reach activation of a targeted area depending on three criteria: selectivity, efficiency and robustness. Main results. The results showed that state-of-the-art configurations (tripolar transverse, tripolar longitudinal) were part of the optimized solutions but new ones could emerge depending on the trade-off between the three criteria and the targeted area. Besides, the choice of appropriate current ratios was more important than the choice of the stimulation amplitude for a stimulation without a priori knowledge of the nerve structure. We successfully assessed the solutions in vivo to selectively induce a decrease in cardiac rhythm through vagus nerve stimulation while limiting side effects. Compared to the standard whole ring configuration, a selective solution found by simulation provided on average 2.6 less adverse effects. Significance. The preliminary results showed the rightness of the simulation, using a generic nerve geometry. It suggested that this approach will have broader applications that would benefit from multicontact cuff electrodes to elicit selective responses. In the context of the vagus nerve stimulation for heart failure therapy, we show that the simulation results were confirmed and improved the therapy while decreasing the side effects. |
doi_str_mv | 10.1088/1741-2552/aabeb9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_01770039v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2026419434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-f8e40b216a82d105fc2e0a7fd2452c7139c36382645239a2647a5caae9e8c883</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS1ERR-wZ4W8A6kMtR3n1V1VtbTSIDbdWzfOTevBiYMfU7Hjp-NRSlaI1X3oO8fWPYS85-wLZ01zwWvJN6IsxQVAh137ipysq9drX7FjchrCjrGC1y17Q45FW1VS8vKE_P7merS0g4A9dXM0I1g6JhvN7Cx4GvImWYjGTfTZxCeXIgU6e-O8oT8m92yxf0TqBjqh32PmfdIxebykMM_W6EUaHd3DYwortbq-JUcD2IDvXuoZebi9ebi-22y_f72_vtputKxZ3AwNStYJXkEjes7KQQtkUA-9kKXQNS9aXVRFI6o8Fi3kWkOpAbDFRjdNcUbOF9snsCp_fwT_Szkw6u5qq6zx46gYr-t8onbPM_1poWfvfiYMUY0maLQWJnQpKMHyA7yVhcwoW1DtXQgeh9WdM3UISR1SUIdE1BJSlnx4cU_diP0q-JtKBj4vgHGz2rnkp3yZ__l9_Ae-m1DxUknFZMV4o-Z-KP4AY6irXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026419434</pqid></control><display><type>article</type><title>Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Dali, Mélissa ; Rossel, Olivier ; Andreu, David ; Laporte, Laure ; Hernández, Alfredo ; Laforet, Jérémy ; Marijon, Eloi ; Hagège, Albert ; Clerc, Maureen ; Henry, Christine ; Guiraud, David</creator><creatorcontrib>Dali, Mélissa ; Rossel, Olivier ; Andreu, David ; Laporte, Laure ; Hernández, Alfredo ; Laforet, Jérémy ; Marijon, Eloi ; Hagège, Albert ; Clerc, Maureen ; Henry, Christine ; Guiraud, David</creatorcontrib><description>Objective. Multipolar cuff electrode can selectively stimulate areas of peripheral nerves and therefore enable to control independent functions. However, the branching and fascicularization are known for a limited set of nerves and the specific organization remains subject-dependent. This paper presents general modeling and optimization methods in the context of multipolar stimulation using a cuff electrode without a priori knowledge of the nerve structure. Vagus nerve stimulation experiments based on the optimization results were then investigated. Approach. The model consisted of two independent components: a lead field matrix representing the transfer function from the applied current to the extracellular voltage present on the nodes of Ranvier along each axon, and a linear activation model. The optimization process consisted in finding the best current repartition (ratios) to reach activation of a targeted area depending on three criteria: selectivity, efficiency and robustness. Main results. The results showed that state-of-the-art configurations (tripolar transverse, tripolar longitudinal) were part of the optimized solutions but new ones could emerge depending on the trade-off between the three criteria and the targeted area. Besides, the choice of appropriate current ratios was more important than the choice of the stimulation amplitude for a stimulation without a priori knowledge of the nerve structure. We successfully assessed the solutions in vivo to selectively induce a decrease in cardiac rhythm through vagus nerve stimulation while limiting side effects. Compared to the standard whole ring configuration, a selective solution found by simulation provided on average 2.6 less adverse effects. Significance. The preliminary results showed the rightness of the simulation, using a generic nerve geometry. It suggested that this approach will have broader applications that would benefit from multicontact cuff electrodes to elicit selective responses. In the context of the vagus nerve stimulation for heart failure therapy, we show that the simulation results were confirmed and improved the therapy while decreasing the side effects.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/aabeb9</identifier><identifier>PMID: 29664415</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Bioengineering ; electrode-nerve modeling ; Life Sciences ; neural computational model ; neural stimulation current optimization ; selective neural stimulation ; vagus nerve stimulation</subject><ispartof>Journal of neural engineering, 2018-08, Vol.15 (4), p.046018-046018</ispartof><rights>2018 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-f8e40b216a82d105fc2e0a7fd2452c7139c36382645239a2647a5caae9e8c883</citedby><cites>FETCH-LOGICAL-c470t-f8e40b216a82d105fc2e0a7fd2452c7139c36382645239a2647a5caae9e8c883</cites><orcidid>0000-0002-4184-6243 ; 0000-0001-7401-2109 ; 0009-0002-3291-4846 ; 0000-0002-6317-6666 ; 0000-0002-0744-9447 ; 0000-0001-7227-3428 ; 0000-0003-2554-5835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/aabeb9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29664415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-01770039$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dali, Mélissa</creatorcontrib><creatorcontrib>Rossel, Olivier</creatorcontrib><creatorcontrib>Andreu, David</creatorcontrib><creatorcontrib>Laporte, Laure</creatorcontrib><creatorcontrib>Hernández, Alfredo</creatorcontrib><creatorcontrib>Laforet, Jérémy</creatorcontrib><creatorcontrib>Marijon, Eloi</creatorcontrib><creatorcontrib>Hagège, Albert</creatorcontrib><creatorcontrib>Clerc, Maureen</creatorcontrib><creatorcontrib>Henry, Christine</creatorcontrib><creatorcontrib>Guiraud, David</creatorcontrib><title>Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. Multipolar cuff electrode can selectively stimulate areas of peripheral nerves and therefore enable to control independent functions. However, the branching and fascicularization are known for a limited set of nerves and the specific organization remains subject-dependent. This paper presents general modeling and optimization methods in the context of multipolar stimulation using a cuff electrode without a priori knowledge of the nerve structure. Vagus nerve stimulation experiments based on the optimization results were then investigated. Approach. The model consisted of two independent components: a lead field matrix representing the transfer function from the applied current to the extracellular voltage present on the nodes of Ranvier along each axon, and a linear activation model. The optimization process consisted in finding the best current repartition (ratios) to reach activation of a targeted area depending on three criteria: selectivity, efficiency and robustness. Main results. The results showed that state-of-the-art configurations (tripolar transverse, tripolar longitudinal) were part of the optimized solutions but new ones could emerge depending on the trade-off between the three criteria and the targeted area. Besides, the choice of appropriate current ratios was more important than the choice of the stimulation amplitude for a stimulation without a priori knowledge of the nerve structure. We successfully assessed the solutions in vivo to selectively induce a decrease in cardiac rhythm through vagus nerve stimulation while limiting side effects. Compared to the standard whole ring configuration, a selective solution found by simulation provided on average 2.6 less adverse effects. Significance. The preliminary results showed the rightness of the simulation, using a generic nerve geometry. It suggested that this approach will have broader applications that would benefit from multicontact cuff electrodes to elicit selective responses. In the context of the vagus nerve stimulation for heart failure therapy, we show that the simulation results were confirmed and improved the therapy while decreasing the side effects.</description><subject>Bioengineering</subject><subject>electrode-nerve modeling</subject><subject>Life Sciences</subject><subject>neural computational model</subject><subject>neural stimulation current optimization</subject><subject>selective neural stimulation</subject><subject>vagus nerve stimulation</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS1ERR-wZ4W8A6kMtR3n1V1VtbTSIDbdWzfOTevBiYMfU7Hjp-NRSlaI1X3oO8fWPYS85-wLZ01zwWvJN6IsxQVAh137ipysq9drX7FjchrCjrGC1y17Q45FW1VS8vKE_P7merS0g4A9dXM0I1g6JhvN7Cx4GvImWYjGTfTZxCeXIgU6e-O8oT8m92yxf0TqBjqh32PmfdIxebykMM_W6EUaHd3DYwortbq-JUcD2IDvXuoZebi9ebi-22y_f72_vtputKxZ3AwNStYJXkEjes7KQQtkUA-9kKXQNS9aXVRFI6o8Fi3kWkOpAbDFRjdNcUbOF9snsCp_fwT_Szkw6u5qq6zx46gYr-t8onbPM_1poWfvfiYMUY0maLQWJnQpKMHyA7yVhcwoW1DtXQgeh9WdM3UISR1SUIdE1BJSlnx4cU_diP0q-JtKBj4vgHGz2rnkp3yZ__l9_Ae-m1DxUknFZMV4o-Z-KP4AY6irXA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Dali, Mélissa</creator><creator>Rossel, Olivier</creator><creator>Andreu, David</creator><creator>Laporte, Laure</creator><creator>Hernández, Alfredo</creator><creator>Laforet, Jérémy</creator><creator>Marijon, Eloi</creator><creator>Hagège, Albert</creator><creator>Clerc, Maureen</creator><creator>Henry, Christine</creator><creator>Guiraud, David</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4184-6243</orcidid><orcidid>https://orcid.org/0000-0001-7401-2109</orcidid><orcidid>https://orcid.org/0009-0002-3291-4846</orcidid><orcidid>https://orcid.org/0000-0002-6317-6666</orcidid><orcidid>https://orcid.org/0000-0002-0744-9447</orcidid><orcidid>https://orcid.org/0000-0001-7227-3428</orcidid><orcidid>https://orcid.org/0000-0003-2554-5835</orcidid></search><sort><creationdate>20180801</creationdate><title>Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation</title><author>Dali, Mélissa ; Rossel, Olivier ; Andreu, David ; Laporte, Laure ; Hernández, Alfredo ; Laforet, Jérémy ; Marijon, Eloi ; Hagège, Albert ; Clerc, Maureen ; Henry, Christine ; Guiraud, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-f8e40b216a82d105fc2e0a7fd2452c7139c36382645239a2647a5caae9e8c883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bioengineering</topic><topic>electrode-nerve modeling</topic><topic>Life Sciences</topic><topic>neural computational model</topic><topic>neural stimulation current optimization</topic><topic>selective neural stimulation</topic><topic>vagus nerve stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dali, Mélissa</creatorcontrib><creatorcontrib>Rossel, Olivier</creatorcontrib><creatorcontrib>Andreu, David</creatorcontrib><creatorcontrib>Laporte, Laure</creatorcontrib><creatorcontrib>Hernández, Alfredo</creatorcontrib><creatorcontrib>Laforet, Jérémy</creatorcontrib><creatorcontrib>Marijon, Eloi</creatorcontrib><creatorcontrib>Hagège, Albert</creatorcontrib><creatorcontrib>Clerc, Maureen</creatorcontrib><creatorcontrib>Henry, Christine</creatorcontrib><creatorcontrib>Guiraud, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dali, Mélissa</au><au>Rossel, Olivier</au><au>Andreu, David</au><au>Laporte, Laure</au><au>Hernández, Alfredo</au><au>Laforet, Jérémy</au><au>Marijon, Eloi</au><au>Hagège, Albert</au><au>Clerc, Maureen</au><au>Henry, Christine</au><au>Guiraud, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>15</volume><issue>4</issue><spage>046018</spage><epage>046018</epage><pages>046018-046018</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. Multipolar cuff electrode can selectively stimulate areas of peripheral nerves and therefore enable to control independent functions. However, the branching and fascicularization are known for a limited set of nerves and the specific organization remains subject-dependent. This paper presents general modeling and optimization methods in the context of multipolar stimulation using a cuff electrode without a priori knowledge of the nerve structure. Vagus nerve stimulation experiments based on the optimization results were then investigated. Approach. The model consisted of two independent components: a lead field matrix representing the transfer function from the applied current to the extracellular voltage present on the nodes of Ranvier along each axon, and a linear activation model. The optimization process consisted in finding the best current repartition (ratios) to reach activation of a targeted area depending on three criteria: selectivity, efficiency and robustness. Main results. The results showed that state-of-the-art configurations (tripolar transverse, tripolar longitudinal) were part of the optimized solutions but new ones could emerge depending on the trade-off between the three criteria and the targeted area. Besides, the choice of appropriate current ratios was more important than the choice of the stimulation amplitude for a stimulation without a priori knowledge of the nerve structure. We successfully assessed the solutions in vivo to selectively induce a decrease in cardiac rhythm through vagus nerve stimulation while limiting side effects. Compared to the standard whole ring configuration, a selective solution found by simulation provided on average 2.6 less adverse effects. Significance. The preliminary results showed the rightness of the simulation, using a generic nerve geometry. It suggested that this approach will have broader applications that would benefit from multicontact cuff electrodes to elicit selective responses. In the context of the vagus nerve stimulation for heart failure therapy, we show that the simulation results were confirmed and improved the therapy while decreasing the side effects.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29664415</pmid><doi>10.1088/1741-2552/aabeb9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4184-6243</orcidid><orcidid>https://orcid.org/0000-0001-7401-2109</orcidid><orcidid>https://orcid.org/0009-0002-3291-4846</orcidid><orcidid>https://orcid.org/0000-0002-6317-6666</orcidid><orcidid>https://orcid.org/0000-0002-0744-9447</orcidid><orcidid>https://orcid.org/0000-0001-7227-3428</orcidid><orcidid>https://orcid.org/0000-0003-2554-5835</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2018-08, Vol.15 (4), p.046018-046018 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_lirmm_01770039v1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Bioengineering electrode-nerve modeling Life Sciences neural computational model neural stimulation current optimization selective neural stimulation vagus nerve stimulation |
title | Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20based%20optimal%20multipolar%20stimulation%20without%20a%20priori%20knowledge%20of%20nerve%20structure:%20application%20to%20vagus%20nerve%20stimulation&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Dali,%20M%C3%A9lissa&rft.date=2018-08-01&rft.volume=15&rft.issue=4&rft.spage=046018&rft.epage=046018&rft.pages=046018-046018&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/aabeb9&rft_dat=%3Cproquest_hal_p%3E2026419434%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2026419434&rft_id=info:pmid/29664415&rfr_iscdi=true |