Theoretical analysis of singleton arc consistency and its extensions
Singleton arc consistency (SAC) is a consistency property that is simple to specify and is stronger than arc consistency. Algorithms have already been proposed to enforce SAC, but they have a high time complexity. In this paper, we give a lower bound to the worst-case time complexity of enforcing SA...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 2008-01, Vol.172 (1), p.29-41 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | Artificial intelligence |
container_volume | 172 |
creator | Bessiere, Christian Debruyne, Romuald |
description | Singleton arc consistency (SAC) is a consistency property that is simple to specify and is stronger than arc consistency. Algorithms have already been proposed to enforce SAC, but they have a high time complexity. In this paper, we give a lower bound to the worst-case time complexity of enforcing SAC on binary constraints. We discuss two interesting features of SAC. The first feature leads us to propose an algorithm for SAC that has optimal time complexity when restricted to binary constraints. The second feature leads us to extend SAC to a stronger level of local consistency that we call Bidirectional SAC (BiSAC). We also show the relationship between SAC and the propagation of disjunctive constraints. |
doi_str_mv | 10.1016/j.artint.2007.09.001 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_00230949v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370207001282</els_id><sourcerecordid>oai_HAL_lirmm_00230949v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-b68595b2a0eaf2574144601a19e7794498a7eb1bae48fced97cd630e95491bf83</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxiyMKGEc-LE9oJUlY8iVWIps-U4F-oqTSrbqui_x1EQbEzW2e9z53sIuaWQUaDVwy7TLtg-ZDkAz0BmAPSMzKjgecplTs_JDABYWnDIL8mV97tYFlLSGXnabHFwGKzRXaJ73Z289cnQJt72nx2GoU-0M4kZ-ngfsDenmGoSG3yCX7H2Nr5ck4tWdx5vfs45-Xh53ixX6fr99W25WKeGURHSuhKlLOtcA-o2LzmjjFVANZXIuWRMCs2xprVGJlqDjeSmqQpAWTJJ61YUc3I_9d3qTh2c3Wt3UoO2arVYq866_V4B5AVIJo80ptmUNm7w3mH7i1BQoze1U5M3NXpTICM9YncTdtA-Smmd7o31f6wUggOMn3mcchg3Plp0yhsbBWFjHZqgmsH-P-gb-BGFhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical analysis of singleton arc consistency and its extensions</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bessiere, Christian ; Debruyne, Romuald</creator><creatorcontrib>Bessiere, Christian ; Debruyne, Romuald</creatorcontrib><description>Singleton arc consistency (SAC) is a consistency property that is simple to specify and is stronger than arc consistency. Algorithms have already been proposed to enforce SAC, but they have a high time complexity. In this paper, we give a lower bound to the worst-case time complexity of enforcing SAC on binary constraints. We discuss two interesting features of SAC. The first feature leads us to propose an algorithm for SAC that has optimal time complexity when restricted to binary constraints. The second feature leads us to extend SAC to a stronger level of local consistency that we call Bidirectional SAC (BiSAC). We also show the relationship between SAC and the propagation of disjunctive constraints.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2007.09.001</identifier><identifier>CODEN: AINTBB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial Intelligence ; Bidirectional singleton arc consistency ; Computer Science ; Computer science; control theory; systems ; Constraint satisfaction problems ; Constructive disjunction ; Disjunctive constraints ; Exact sciences and technology ; Learning and adaptive systems ; Local consistency ; Singleton arc consistency</subject><ispartof>Artificial intelligence, 2008-01, Vol.172 (1), p.29-41</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-b68595b2a0eaf2574144601a19e7794498a7eb1bae48fced97cd630e95491bf83</citedby><cites>FETCH-LOGICAL-c418t-b68595b2a0eaf2574144601a19e7794498a7eb1bae48fced97cd630e95491bf83</cites><orcidid>0000-0003-4059-6403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0004370207001282$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19887008$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-00230949$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bessiere, Christian</creatorcontrib><creatorcontrib>Debruyne, Romuald</creatorcontrib><title>Theoretical analysis of singleton arc consistency and its extensions</title><title>Artificial intelligence</title><description>Singleton arc consistency (SAC) is a consistency property that is simple to specify and is stronger than arc consistency. Algorithms have already been proposed to enforce SAC, but they have a high time complexity. In this paper, we give a lower bound to the worst-case time complexity of enforcing SAC on binary constraints. We discuss two interesting features of SAC. The first feature leads us to propose an algorithm for SAC that has optimal time complexity when restricted to binary constraints. The second feature leads us to extend SAC to a stronger level of local consistency that we call Bidirectional SAC (BiSAC). We also show the relationship between SAC and the propagation of disjunctive constraints.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bidirectional singleton arc consistency</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Constraint satisfaction problems</subject><subject>Constructive disjunction</subject><subject>Disjunctive constraints</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Local consistency</subject><subject>Singleton arc consistency</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxiyMKGEc-LE9oJUlY8iVWIps-U4F-oqTSrbqui_x1EQbEzW2e9z53sIuaWQUaDVwy7TLtg-ZDkAz0BmAPSMzKjgecplTs_JDABYWnDIL8mV97tYFlLSGXnabHFwGKzRXaJ73Z289cnQJt72nx2GoU-0M4kZ-ngfsDenmGoSG3yCX7H2Nr5ck4tWdx5vfs45-Xh53ixX6fr99W25WKeGURHSuhKlLOtcA-o2LzmjjFVANZXIuWRMCs2xprVGJlqDjeSmqQpAWTJJ61YUc3I_9d3qTh2c3Wt3UoO2arVYq866_V4B5AVIJo80ptmUNm7w3mH7i1BQoze1U5M3NXpTICM9YncTdtA-Smmd7o31f6wUggOMn3mcchg3Plp0yhsbBWFjHZqgmsH-P-gb-BGFhA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Bessiere, Christian</creator><creator>Debruyne, Romuald</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4059-6403</orcidid></search><sort><creationdate>20080101</creationdate><title>Theoretical analysis of singleton arc consistency and its extensions</title><author>Bessiere, Christian ; Debruyne, Romuald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-b68595b2a0eaf2574144601a19e7794498a7eb1bae48fced97cd630e95491bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bidirectional singleton arc consistency</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Constraint satisfaction problems</topic><topic>Constructive disjunction</topic><topic>Disjunctive constraints</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Local consistency</topic><topic>Singleton arc consistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bessiere, Christian</creatorcontrib><creatorcontrib>Debruyne, Romuald</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bessiere, Christian</au><au>Debruyne, Romuald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical analysis of singleton arc consistency and its extensions</atitle><jtitle>Artificial intelligence</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>172</volume><issue>1</issue><spage>29</spage><epage>41</epage><pages>29-41</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><coden>AINTBB</coden><abstract>Singleton arc consistency (SAC) is a consistency property that is simple to specify and is stronger than arc consistency. Algorithms have already been proposed to enforce SAC, but they have a high time complexity. In this paper, we give a lower bound to the worst-case time complexity of enforcing SAC on binary constraints. We discuss two interesting features of SAC. The first feature leads us to propose an algorithm for SAC that has optimal time complexity when restricted to binary constraints. The second feature leads us to extend SAC to a stronger level of local consistency that we call Bidirectional SAC (BiSAC). We also show the relationship between SAC and the propagation of disjunctive constraints.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2007.09.001</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4059-6403</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 2008-01, Vol.172 (1), p.29-41 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_lirmm_00230949v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Applied sciences Artificial Intelligence Bidirectional singleton arc consistency Computer Science Computer science control theory systems Constraint satisfaction problems Constructive disjunction Disjunctive constraints Exact sciences and technology Learning and adaptive systems Local consistency Singleton arc consistency |
title | Theoretical analysis of singleton arc consistency and its extensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20analysis%20of%20singleton%20arc%20consistency%20and%20its%20extensions&rft.jtitle=Artificial%20intelligence&rft.au=Bessiere,%20Christian&rft.date=2008-01-01&rft.volume=172&rft.issue=1&rft.spage=29&rft.epage=41&rft.pages=29-41&rft.issn=0004-3702&rft.eissn=1872-7921&rft.coden=AINTBB&rft_id=info:doi/10.1016/j.artint.2007.09.001&rft_dat=%3Chal_cross%3Eoai_HAL_lirmm_00230949v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0004370207001282&rfr_iscdi=true |