Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA

We combine James Webb Space Telescope (JWST) and Hubble Space Telescope imaging with Atacama Large Millimeter Array CO(2–1) spectroscopy to study the highly turbulent multiphase intergalactic medium (IGM) in Stephan’s Quintet on 25–150 pc scales. Previous Spitzer observations revealed luminous H 2 l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-07, Vol.951 (2), p.104
Hauptverfasser: Appleton, P. N., Guillard, P., Emonts, Bjorn, Boulanger, Francois, Togi, Aditya, Reach, William T., Alatalo, Kathleen, Cluver, M., Diaz Santos, T., Duc, P.-A., Gallagher, S., Ogle, P., O’Sullivan, E., Voggel, K., Xu, C. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 104
container_title The Astrophysical journal
container_volume 951
creator Appleton, P. N.
Guillard, P.
Emonts, Bjorn
Boulanger, Francois
Togi, Aditya
Reach, William T.
Alatalo, Kathleen
Cluver, M.
Diaz Santos, T.
Duc, P.-A.
Gallagher, S.
Ogle, P.
O’Sullivan, E.
Voggel, K.
Xu, C. K.
description We combine James Webb Space Telescope (JWST) and Hubble Space Telescope imaging with Atacama Large Millimeter Array CO(2–1) spectroscopy to study the highly turbulent multiphase intergalactic medium (IGM) in Stephan’s Quintet on 25–150 pc scales. Previous Spitzer observations revealed luminous H 2 line cooling across a 45 kpc-long filament, created by a giant shock wave, following the collision with an intruder galaxy, NGC 7318b. We demonstrate that the Mid-Infrared Instrument/F1000W/F770W filters are dominated by 0–0 S(3) H 2 and a combination of polycyclic aromatic hydrocarbon and 0–0 S(5) H 2 emission. These observations reveal the dissipation of kinetic energy as massive clouds experience collisions, interactions, and likely destruction/recycling within different phases of the IGM. In 1 kpc-scaled structure, warm H 2 was seen to form a triangular-shaped head and tail of compressed and stripped gas behind a narrow shell of cold H 2 . In another region, two cold molecular clumps with very different velocities are connected by an arrow-shaped stream of warm, probably shocked, H 2 suggesting a cloud–cloud collision is occurring. In both regions, a high warm-to-cold molecular gas fraction indicates that the cold clouds are being disrupted and converted into warm gas. We also map gas associated with an apparently forming dwarf galaxy. We suggest that the primary mechanism for exciting strong mid-IR H 2 lines throughout Stephan’s Quintet is through a fog of warm gas created by the shattering of denser cold molecular clouds and mixing/recycling in the post-shocked gas. A full picture of the diverse kinematics and excitation of the warm H 2 will require future JWST mid-IR spectroscopy. The current observations reveal the rich variety of ways that different gas phases can interact with one another.
doi_str_mv 10.3847/1538-4357/accc2a
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_04158350v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d6c0761fe52f44b58477ed20c48f67ea</doaj_id><sourcerecordid>2834190253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-f59b671a2fcf976288df9b57f51096b34801fc6ea102c6947a1d7438ffae1f683</originalsourceid><addsrcrecordid>eNp9kU2L1TAUhosoeB3duwyIG7FOvpMuL4POXLkXkY7oLpymybTXTtNpWsWF4N_w7_lLTK2MCOIq5PC8Dzl5s-wxwS-Y5uqUCKZzzoQ6BWsthTvZ5nZ0N9tgjHkumfpwP3sQ43G50qLYZF8Pcze1QwPRoXOIaNdPbgQ7taGPKPSonCsYbXQWlRY6F1Hbo6lxqGyC_ejqlb-CbolYdHB1O1-j4FE5uSTtf3z7HtHbuU3UhD63U4Nevy8vEfQ12u4P24fZPQ9ddI9-nyfZu1cvL88u8v2b893Zdp9brsmUe1FUUhGg3vpCSap17YtKKC8ILmTFuMbEW-mAYGplwRWQWnGmvQdHvNTsJNut3jrA0Qxjew3jFxOgNb8GYbwyMKYFOmdqabGSxDtBPeeVSH-rXE1xeomXykFyPVtdDXR_qS62e9P2cTaYE6GZwJ9Igp-s8DCGm9nFyRzDPPZpV0M146TAVLBE4ZWyY4hxdP7WS7BZ2jVLlWap0qztpsjzNdKG4Y_zP_jTf-AwHE0hiKEpyM1Qe_YT_aSzWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834190253</pqid></control><display><type>article</type><title>Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Appleton, P. N. ; Guillard, P. ; Emonts, Bjorn ; Boulanger, Francois ; Togi, Aditya ; Reach, William T. ; Alatalo, Kathleen ; Cluver, M. ; Diaz Santos, T. ; Duc, P.-A. ; Gallagher, S. ; Ogle, P. ; O’Sullivan, E. ; Voggel, K. ; Xu, C. K.</creator><creatorcontrib>Appleton, P. N. ; Guillard, P. ; Emonts, Bjorn ; Boulanger, Francois ; Togi, Aditya ; Reach, William T. ; Alatalo, Kathleen ; Cluver, M. ; Diaz Santos, T. ; Duc, P.-A. ; Gallagher, S. ; Ogle, P. ; O’Sullivan, E. ; Voggel, K. ; Xu, C. K.</creatorcontrib><description>We combine James Webb Space Telescope (JWST) and Hubble Space Telescope imaging with Atacama Large Millimeter Array CO(2–1) spectroscopy to study the highly turbulent multiphase intergalactic medium (IGM) in Stephan’s Quintet on 25–150 pc scales. Previous Spitzer observations revealed luminous H 2 line cooling across a 45 kpc-long filament, created by a giant shock wave, following the collision with an intruder galaxy, NGC 7318b. We demonstrate that the Mid-Infrared Instrument/F1000W/F770W filters are dominated by 0–0 S(3) H 2 and a combination of polycyclic aromatic hydrocarbon and 0–0 S(5) H 2 emission. These observations reveal the dissipation of kinetic energy as massive clouds experience collisions, interactions, and likely destruction/recycling within different phases of the IGM. In 1 kpc-scaled structure, warm H 2 was seen to form a triangular-shaped head and tail of compressed and stripped gas behind a narrow shell of cold H 2 . In another region, two cold molecular clumps with very different velocities are connected by an arrow-shaped stream of warm, probably shocked, H 2 suggesting a cloud–cloud collision is occurring. In both regions, a high warm-to-cold molecular gas fraction indicates that the cold clouds are being disrupted and converted into warm gas. We also map gas associated with an apparently forming dwarf galaxy. We suggest that the primary mechanism for exciting strong mid-IR H 2 lines throughout Stephan’s Quintet is through a fog of warm gas created by the shattering of denser cold molecular clouds and mixing/recycling in the post-shocked gas. A full picture of the diverse kinematics and excitation of the warm H 2 will require future JWST mid-IR spectroscopy. The current observations reveal the rich variety of ways that different gas phases can interact with one another.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/accc2a</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aromatic hydrocarbons ; Astrophysics ; Clumps ; Cold ; Compressed gas ; Dwarf galaxies ; Energy dissipation ; Fluid filters ; Galaxy groups ; Hickson compact group ; Hubble Space Telescope ; Infrared filters ; Infrared instruments ; Infrared spectroscopy ; Intergalactic clouds ; Intergalactic media ; Intergalactic medium ; Intergalactic medium phases ; James Webb Space Telescope ; Kinematics ; Kinetic energy ; Molecular clouds ; Molecular gases ; Multiphase ; Polycyclic aromatic hydrocarbons ; Radio telescopes ; Recycling ; Sciences of the Universe ; Shock waves ; Space telescopes ; Spectroscopy ; Spectrum analysis ; Vapor phases</subject><ispartof>The Astrophysical journal, 2023-07, Vol.951 (2), p.104</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-f59b671a2fcf976288df9b57f51096b34801fc6ea102c6947a1d7438ffae1f683</citedby><cites>FETCH-LOGICAL-c481t-f59b671a2fcf976288df9b57f51096b34801fc6ea102c6947a1d7438ffae1f683</cites><orcidid>0000-0001-8362-4094 ; 0000-0003-0699-6083 ; 0000-0001-6215-0950 ; 0000-0002-2421-1350 ; 0000-0002-3471-981X ; 0000-0003-3343-6284 ; 0000-0002-5671-6900 ; 0000-0002-4261-2326 ; 0000-0002-7607-8766 ; 0000-0002-9871-6490 ; 0000-0003-2983-815X ; 0000-0003-1097-6042 ; 0000-0001-6217-8101 ; 0000-0002-1588-6700 ; 0000-0001-5042-3421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/accc2a/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,38867,53842</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04158350$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Appleton, P. N.</creatorcontrib><creatorcontrib>Guillard, P.</creatorcontrib><creatorcontrib>Emonts, Bjorn</creatorcontrib><creatorcontrib>Boulanger, Francois</creatorcontrib><creatorcontrib>Togi, Aditya</creatorcontrib><creatorcontrib>Reach, William T.</creatorcontrib><creatorcontrib>Alatalo, Kathleen</creatorcontrib><creatorcontrib>Cluver, M.</creatorcontrib><creatorcontrib>Diaz Santos, T.</creatorcontrib><creatorcontrib>Duc, P.-A.</creatorcontrib><creatorcontrib>Gallagher, S.</creatorcontrib><creatorcontrib>Ogle, P.</creatorcontrib><creatorcontrib>O’Sullivan, E.</creatorcontrib><creatorcontrib>Voggel, K.</creatorcontrib><creatorcontrib>Xu, C. K.</creatorcontrib><title>Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We combine James Webb Space Telescope (JWST) and Hubble Space Telescope imaging with Atacama Large Millimeter Array CO(2–1) spectroscopy to study the highly turbulent multiphase intergalactic medium (IGM) in Stephan’s Quintet on 25–150 pc scales. Previous Spitzer observations revealed luminous H 2 line cooling across a 45 kpc-long filament, created by a giant shock wave, following the collision with an intruder galaxy, NGC 7318b. We demonstrate that the Mid-Infrared Instrument/F1000W/F770W filters are dominated by 0–0 S(3) H 2 and a combination of polycyclic aromatic hydrocarbon and 0–0 S(5) H 2 emission. These observations reveal the dissipation of kinetic energy as massive clouds experience collisions, interactions, and likely destruction/recycling within different phases of the IGM. In 1 kpc-scaled structure, warm H 2 was seen to form a triangular-shaped head and tail of compressed and stripped gas behind a narrow shell of cold H 2 . In another region, two cold molecular clumps with very different velocities are connected by an arrow-shaped stream of warm, probably shocked, H 2 suggesting a cloud–cloud collision is occurring. In both regions, a high warm-to-cold molecular gas fraction indicates that the cold clouds are being disrupted and converted into warm gas. We also map gas associated with an apparently forming dwarf galaxy. We suggest that the primary mechanism for exciting strong mid-IR H 2 lines throughout Stephan’s Quintet is through a fog of warm gas created by the shattering of denser cold molecular clouds and mixing/recycling in the post-shocked gas. A full picture of the diverse kinematics and excitation of the warm H 2 will require future JWST mid-IR spectroscopy. The current observations reveal the rich variety of ways that different gas phases can interact with one another.</description><subject>Aromatic hydrocarbons</subject><subject>Astrophysics</subject><subject>Clumps</subject><subject>Cold</subject><subject>Compressed gas</subject><subject>Dwarf galaxies</subject><subject>Energy dissipation</subject><subject>Fluid filters</subject><subject>Galaxy groups</subject><subject>Hickson compact group</subject><subject>Hubble Space Telescope</subject><subject>Infrared filters</subject><subject>Infrared instruments</subject><subject>Infrared spectroscopy</subject><subject>Intergalactic clouds</subject><subject>Intergalactic media</subject><subject>Intergalactic medium</subject><subject>Intergalactic medium phases</subject><subject>James Webb Space Telescope</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>Molecular clouds</subject><subject>Molecular gases</subject><subject>Multiphase</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Radio telescopes</subject><subject>Recycling</subject><subject>Sciences of the Universe</subject><subject>Shock waves</subject><subject>Space telescopes</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Vapor phases</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU2L1TAUhosoeB3duwyIG7FOvpMuL4POXLkXkY7oLpymybTXTtNpWsWF4N_w7_lLTK2MCOIq5PC8Dzl5s-wxwS-Y5uqUCKZzzoQ6BWsthTvZ5nZ0N9tgjHkumfpwP3sQ43G50qLYZF8Pcze1QwPRoXOIaNdPbgQ7taGPKPSonCsYbXQWlRY6F1Hbo6lxqGyC_ejqlb-CbolYdHB1O1-j4FE5uSTtf3z7HtHbuU3UhD63U4Nevy8vEfQ12u4P24fZPQ9ddI9-nyfZu1cvL88u8v2b893Zdp9brsmUe1FUUhGg3vpCSap17YtKKC8ILmTFuMbEW-mAYGplwRWQWnGmvQdHvNTsJNut3jrA0Qxjew3jFxOgNb8GYbwyMKYFOmdqabGSxDtBPeeVSH-rXE1xeomXykFyPVtdDXR_qS62e9P2cTaYE6GZwJ9Igp-s8DCGm9nFyRzDPPZpV0M146TAVLBE4ZWyY4hxdP7WS7BZ2jVLlWap0qztpsjzNdKG4Y_zP_jTf-AwHE0hiKEpyM1Qe_YT_aSzWA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Appleton, P. N.</creator><creator>Guillard, P.</creator><creator>Emonts, Bjorn</creator><creator>Boulanger, Francois</creator><creator>Togi, Aditya</creator><creator>Reach, William T.</creator><creator>Alatalo, Kathleen</creator><creator>Cluver, M.</creator><creator>Diaz Santos, T.</creator><creator>Duc, P.-A.</creator><creator>Gallagher, S.</creator><creator>Ogle, P.</creator><creator>O’Sullivan, E.</creator><creator>Voggel, K.</creator><creator>Xu, C. K.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8362-4094</orcidid><orcidid>https://orcid.org/0000-0003-0699-6083</orcidid><orcidid>https://orcid.org/0000-0001-6215-0950</orcidid><orcidid>https://orcid.org/0000-0002-2421-1350</orcidid><orcidid>https://orcid.org/0000-0002-3471-981X</orcidid><orcidid>https://orcid.org/0000-0003-3343-6284</orcidid><orcidid>https://orcid.org/0000-0002-5671-6900</orcidid><orcidid>https://orcid.org/0000-0002-4261-2326</orcidid><orcidid>https://orcid.org/0000-0002-7607-8766</orcidid><orcidid>https://orcid.org/0000-0002-9871-6490</orcidid><orcidid>https://orcid.org/0000-0003-2983-815X</orcidid><orcidid>https://orcid.org/0000-0003-1097-6042</orcidid><orcidid>https://orcid.org/0000-0001-6217-8101</orcidid><orcidid>https://orcid.org/0000-0002-1588-6700</orcidid><orcidid>https://orcid.org/0000-0001-5042-3421</orcidid></search><sort><creationdate>20230701</creationdate><title>Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA</title><author>Appleton, P. N. ; Guillard, P. ; Emonts, Bjorn ; Boulanger, Francois ; Togi, Aditya ; Reach, William T. ; Alatalo, Kathleen ; Cluver, M. ; Diaz Santos, T. ; Duc, P.-A. ; Gallagher, S. ; Ogle, P. ; O’Sullivan, E. ; Voggel, K. ; Xu, C. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-f59b671a2fcf976288df9b57f51096b34801fc6ea102c6947a1d7438ffae1f683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aromatic hydrocarbons</topic><topic>Astrophysics</topic><topic>Clumps</topic><topic>Cold</topic><topic>Compressed gas</topic><topic>Dwarf galaxies</topic><topic>Energy dissipation</topic><topic>Fluid filters</topic><topic>Galaxy groups</topic><topic>Hickson compact group</topic><topic>Hubble Space Telescope</topic><topic>Infrared filters</topic><topic>Infrared instruments</topic><topic>Infrared spectroscopy</topic><topic>Intergalactic clouds</topic><topic>Intergalactic media</topic><topic>Intergalactic medium</topic><topic>Intergalactic medium phases</topic><topic>James Webb Space Telescope</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>Molecular clouds</topic><topic>Molecular gases</topic><topic>Multiphase</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Radio telescopes</topic><topic>Recycling</topic><topic>Sciences of the Universe</topic><topic>Shock waves</topic><topic>Space telescopes</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Appleton, P. N.</creatorcontrib><creatorcontrib>Guillard, P.</creatorcontrib><creatorcontrib>Emonts, Bjorn</creatorcontrib><creatorcontrib>Boulanger, Francois</creatorcontrib><creatorcontrib>Togi, Aditya</creatorcontrib><creatorcontrib>Reach, William T.</creatorcontrib><creatorcontrib>Alatalo, Kathleen</creatorcontrib><creatorcontrib>Cluver, M.</creatorcontrib><creatorcontrib>Diaz Santos, T.</creatorcontrib><creatorcontrib>Duc, P.-A.</creatorcontrib><creatorcontrib>Gallagher, S.</creatorcontrib><creatorcontrib>Ogle, P.</creatorcontrib><creatorcontrib>O’Sullivan, E.</creatorcontrib><creatorcontrib>Voggel, K.</creatorcontrib><creatorcontrib>Xu, C. K.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appleton, P. N.</au><au>Guillard, P.</au><au>Emonts, Bjorn</au><au>Boulanger, Francois</au><au>Togi, Aditya</au><au>Reach, William T.</au><au>Alatalo, Kathleen</au><au>Cluver, M.</au><au>Diaz Santos, T.</au><au>Duc, P.-A.</au><au>Gallagher, S.</au><au>Ogle, P.</au><au>O’Sullivan, E.</au><au>Voggel, K.</au><au>Xu, C. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>951</volume><issue>2</issue><spage>104</spage><pages>104-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We combine James Webb Space Telescope (JWST) and Hubble Space Telescope imaging with Atacama Large Millimeter Array CO(2–1) spectroscopy to study the highly turbulent multiphase intergalactic medium (IGM) in Stephan’s Quintet on 25–150 pc scales. Previous Spitzer observations revealed luminous H 2 line cooling across a 45 kpc-long filament, created by a giant shock wave, following the collision with an intruder galaxy, NGC 7318b. We demonstrate that the Mid-Infrared Instrument/F1000W/F770W filters are dominated by 0–0 S(3) H 2 and a combination of polycyclic aromatic hydrocarbon and 0–0 S(5) H 2 emission. These observations reveal the dissipation of kinetic energy as massive clouds experience collisions, interactions, and likely destruction/recycling within different phases of the IGM. In 1 kpc-scaled structure, warm H 2 was seen to form a triangular-shaped head and tail of compressed and stripped gas behind a narrow shell of cold H 2 . In another region, two cold molecular clumps with very different velocities are connected by an arrow-shaped stream of warm, probably shocked, H 2 suggesting a cloud–cloud collision is occurring. In both regions, a high warm-to-cold molecular gas fraction indicates that the cold clouds are being disrupted and converted into warm gas. We also map gas associated with an apparently forming dwarf galaxy. We suggest that the primary mechanism for exciting strong mid-IR H 2 lines throughout Stephan’s Quintet is through a fog of warm gas created by the shattering of denser cold molecular clouds and mixing/recycling in the post-shocked gas. A full picture of the diverse kinematics and excitation of the warm H 2 will require future JWST mid-IR spectroscopy. The current observations reveal the rich variety of ways that different gas phases can interact with one another.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/accc2a</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8362-4094</orcidid><orcidid>https://orcid.org/0000-0003-0699-6083</orcidid><orcidid>https://orcid.org/0000-0001-6215-0950</orcidid><orcidid>https://orcid.org/0000-0002-2421-1350</orcidid><orcidid>https://orcid.org/0000-0002-3471-981X</orcidid><orcidid>https://orcid.org/0000-0003-3343-6284</orcidid><orcidid>https://orcid.org/0000-0002-5671-6900</orcidid><orcidid>https://orcid.org/0000-0002-4261-2326</orcidid><orcidid>https://orcid.org/0000-0002-7607-8766</orcidid><orcidid>https://orcid.org/0000-0002-9871-6490</orcidid><orcidid>https://orcid.org/0000-0003-2983-815X</orcidid><orcidid>https://orcid.org/0000-0003-1097-6042</orcidid><orcidid>https://orcid.org/0000-0001-6217-8101</orcidid><orcidid>https://orcid.org/0000-0002-1588-6700</orcidid><orcidid>https://orcid.org/0000-0001-5042-3421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2023-07, Vol.951 (2), p.104
issn 0004-637X
1538-4357
language eng
recordid cdi_hal_primary_oai_HAL_insu_04158350v1
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Aromatic hydrocarbons
Astrophysics
Clumps
Cold
Compressed gas
Dwarf galaxies
Energy dissipation
Fluid filters
Galaxy groups
Hickson compact group
Hubble Space Telescope
Infrared filters
Infrared instruments
Infrared spectroscopy
Intergalactic clouds
Intergalactic media
Intergalactic medium
Intergalactic medium phases
James Webb Space Telescope
Kinematics
Kinetic energy
Molecular clouds
Molecular gases
Multiphase
Polycyclic aromatic hydrocarbons
Radio telescopes
Recycling
Sciences of the Universe
Shock waves
Space telescopes
Spectroscopy
Spectrum analysis
Vapor phases
title Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphase%20Gas%20Interactions%20on%20Subarcsec%20Scales%20in%20the%20Shocked%20Intergalactic%20Medium%20of%20Stephan%E2%80%99s%20Quintet%20with%20JWST%20and%20ALMA&rft.jtitle=The%20Astrophysical%20journal&rft.au=Appleton,%20P.%20N.&rft.date=2023-07-01&rft.volume=951&rft.issue=2&rft.spage=104&rft.pages=104-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/accc2a&rft_dat=%3Cproquest_hal_p%3E2834190253%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834190253&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d6c0761fe52f44b58477ed20c48f67ea&rfr_iscdi=true