Seasonal Environmental Controls on Soil CO2 Dynamics at a High CO2 Flux Sites (Piton de la Fournaise and Mayotte Volcanoes)
Environmental parameters drive seasonal soil CO2 efflux toward the atmosphere. However, their influence is not fully understood in contexts of high CO2 fluxes where CO2 accumulates in the subsurface. A prime example are volcanoes subject to continuous CO2 diffuse degassing rising from deep magmatic...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Biogeosciences 2023-06, Vol.128 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of geophysical research. Biogeosciences |
container_volume | 128 |
creator | Bénard, B. Di Muro, A. Liuzzo, M. Gurrieri, S. Boissier, P. Brunet, C. Desfete, N. Kowalski, P. Lauret, F. |
description | Environmental parameters drive seasonal soil CO2 efflux toward the atmosphere. However, their influence is not fully understood in contexts of high CO2 fluxes where CO2 accumulates in the subsurface. A prime example are volcanoes subject to continuous CO2 diffuse degassing rising from deep magmatic reservoirs, through the subsurface and up to the atmosphere. For many of these volcanoes where soil CO2 is monitored, a seasonal influence of the atmosphere and water table is observed but not characterized. Here, we compare variations of air temperature, atmospheric pressure, rainfall and water table level with near‐surface soil CO2 concentration by performing a time‐lagged detrended cross‐correlation analysis on years‐long time series from the volcanoes of Piton de la Fournaise and Mayotte. At Piton de la Fournaise, soil CO2 variations correlate best with air temperature variations (0.81) and water table variations (0.74). In Mayotte, soil CO2 variations correlate best with atmospheric pressure variations (−0.95). We propose that at Piton de la Fournaise, the thick vadose zone and high permeability favor CO2 transfer by thermal convection. Additionally, energy transfer is decoupled from mass transfer. Slow heat transfer from the atmosphere down to the accumulated CO2 layers in the subsurface results in a delayed influence of air temperature and of the water table level on the thermal gradient between the subsurface and the atmosphere, and consequently on the efficiency of the CO2 transfer. In Mayotte, we propose that the thin vadose zone and the presence of a network of large fractures favor CO2 transfer by barometric pumping.
Plain Language Summary
The soil is a major reservoir of gaseous CO2 at the scale of the planet. This soil CO2 is mobile and can escape to the atmosphere and contribute to global warming. It thus important to understand what controls its mobility. In contexts of high soil CO2 contents, environmental parameters can drive soil CO2 transfers toward the atmosphere, but their influence is still poorly understood at timescales beyond a few days. To address this issue, we studied how air temperature, atmospheric pressure, rainfall, and water table level affect soil CO2 efflux in volcanic environments where the soil CO2 content is naturally high due to magmatic degassing. Our study sites are the volcanoes of Piton de la Fournaise and Mayotte. We performed a time‐lagged detrended cross‐correlation analysis which compares the similarity between dif |
doi_str_mv | 10.1029/2023JG007409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_04155695v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830329113</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3000-b2f91f728cd32e634ae9114c7cc39e596f8fc648fbcfcd37dce2fae55d8adb9d3</originalsourceid><addsrcrecordid>eNpNkUtLAzEQxxdRsNTe_AABLypU89jdbo6l9mGpVKx6DdNs1qakSd3sVhe_vLEVcS4z8-c3LyaKzgm-IZjyW4opm44x7sWYH0UtSlLezXhKjv_ihJ1GHe_XOFgWJEJa0ddCgXcWDBranS6d3ShbhWzgbFU645GzaOF0EOYU3TUWNlp6BBUCNNFvq708MvUnWuhKeXT5qKtQkStkAI1cXVrQXiGwOXqAxlWVQq_OSLBO-auz6KQA41Xn17ejl9HweTDpzubj-0F_1l2xsGl3SQtOih7NZM6oSlkMKqwey56UjKuEp0VWyDTOiqUsAtLLpaIFqCTJM8iXPGft6PrQdwVGbEu9gbIRDrSY9GdCW18LHJMkSXmyIwG-OMDb0r3XyldivT_DeEEzhhkNs1mg2IH60EY1f00JFj-_EP9_IabjpzGlCcbsGxuifNI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830329113</pqid></control><display><type>article</type><title>Seasonal Environmental Controls on Soil CO2 Dynamics at a High CO2 Flux Sites (Piton de la Fournaise and Mayotte Volcanoes)</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Bénard, B. ; Di Muro, A. ; Liuzzo, M. ; Gurrieri, S. ; Boissier, P. ; Brunet, C. ; Desfete, N. ; Kowalski, P. ; Lauret, F.</creator><creatorcontrib>Bénard, B. ; Di Muro, A. ; Liuzzo, M. ; Gurrieri, S. ; Boissier, P. ; Brunet, C. ; Desfete, N. ; Kowalski, P. ; Lauret, F.</creatorcontrib><description>Environmental parameters drive seasonal soil CO2 efflux toward the atmosphere. However, their influence is not fully understood in contexts of high CO2 fluxes where CO2 accumulates in the subsurface. A prime example are volcanoes subject to continuous CO2 diffuse degassing rising from deep magmatic reservoirs, through the subsurface and up to the atmosphere. For many of these volcanoes where soil CO2 is monitored, a seasonal influence of the atmosphere and water table is observed but not characterized. Here, we compare variations of air temperature, atmospheric pressure, rainfall and water table level with near‐surface soil CO2 concentration by performing a time‐lagged detrended cross‐correlation analysis on years‐long time series from the volcanoes of Piton de la Fournaise and Mayotte. At Piton de la Fournaise, soil CO2 variations correlate best with air temperature variations (0.81) and water table variations (0.74). In Mayotte, soil CO2 variations correlate best with atmospheric pressure variations (−0.95). We propose that at Piton de la Fournaise, the thick vadose zone and high permeability favor CO2 transfer by thermal convection. Additionally, energy transfer is decoupled from mass transfer. Slow heat transfer from the atmosphere down to the accumulated CO2 layers in the subsurface results in a delayed influence of air temperature and of the water table level on the thermal gradient between the subsurface and the atmosphere, and consequently on the efficiency of the CO2 transfer. In Mayotte, we propose that the thin vadose zone and the presence of a network of large fractures favor CO2 transfer by barometric pumping.
Plain Language Summary
The soil is a major reservoir of gaseous CO2 at the scale of the planet. This soil CO2 is mobile and can escape to the atmosphere and contribute to global warming. It thus important to understand what controls its mobility. In contexts of high soil CO2 contents, environmental parameters can drive soil CO2 transfers toward the atmosphere, but their influence is still poorly understood at timescales beyond a few days. To address this issue, we studied how air temperature, atmospheric pressure, rainfall, and water table level affect soil CO2 efflux in volcanic environments where the soil CO2 content is naturally high due to magmatic degassing. Our study sites are the volcanoes of Piton de la Fournaise and Mayotte. We performed a time‐lagged detrended cross‐correlation analysis which compares the similarity between different time series. We find that air temperature, atmospheric pressure and water table level variations can cause soil CO2 to move toward the surface. The magnitude of their influence and the type of transfers depend on the geological properties of the study sites. We also find that these influences can occur with significant delays of over a hundred days.
Key Points
Air temperature, atmospheric pressure, and water table level influence soil CO2 concentrations at a seasonal scale
The decoupling of heat and mass transfer in the subsurface induces a delayed response of soil CO2 concentrations to environmental forcing
CO2 mass transport at high flux is driven by thermal convection or barometric pumping depending on site properties</description><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1029/2023JG007409</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Air temperature ; Atmosphere ; Atmospheric pressure ; barometric pumping ; Carbon dioxide ; Carbon dioxide concentration ; Cellular convection ; Climate change ; Convection ; Correlation analysis ; Degassing ; Efflux ; Energy transfer ; Environmental control ; Environmental factors ; Fractures ; Free convection ; Global warming ; Groundwater table ; Heat transfer ; Influence ; Mass transfer ; Parameters ; Permeability ; Piton de la Fournaise ; Precipitation ; Rainfall ; Reservoirs ; Sciences of the Universe ; Soil ; soil CO2 ; Soil dynamics ; Soil permeability ; Soil surfaces ; Soil temperature ; Soil water movement ; Soils ; Stream degassing ; Temperature gradients ; thermal convection ; Time series ; Vadose water ; vadose zone ; Variation ; Volcanic activity ; Volcanic environments ; volcanic gases ; Volcanic soils ; Volcanoes ; Water ; Water table</subject><ispartof>Journal of geophysical research. Biogeosciences, 2023-06, Vol.128 (6), p.n/a</ispartof><rights>2023 The Authors.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3186-8534 ; 0000-0002-3099-7505 ; 0000-0003-0715-5729 ; 0000-0002-9512-529X ; 0000-0003-4085-0440 ; 0000-0002-7635-1283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023JG007409$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023JG007409$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04155695$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bénard, B.</creatorcontrib><creatorcontrib>Di Muro, A.</creatorcontrib><creatorcontrib>Liuzzo, M.</creatorcontrib><creatorcontrib>Gurrieri, S.</creatorcontrib><creatorcontrib>Boissier, P.</creatorcontrib><creatorcontrib>Brunet, C.</creatorcontrib><creatorcontrib>Desfete, N.</creatorcontrib><creatorcontrib>Kowalski, P.</creatorcontrib><creatorcontrib>Lauret, F.</creatorcontrib><title>Seasonal Environmental Controls on Soil CO2 Dynamics at a High CO2 Flux Sites (Piton de la Fournaise and Mayotte Volcanoes)</title><title>Journal of geophysical research. Biogeosciences</title><description>Environmental parameters drive seasonal soil CO2 efflux toward the atmosphere. However, their influence is not fully understood in contexts of high CO2 fluxes where CO2 accumulates in the subsurface. A prime example are volcanoes subject to continuous CO2 diffuse degassing rising from deep magmatic reservoirs, through the subsurface and up to the atmosphere. For many of these volcanoes where soil CO2 is monitored, a seasonal influence of the atmosphere and water table is observed but not characterized. Here, we compare variations of air temperature, atmospheric pressure, rainfall and water table level with near‐surface soil CO2 concentration by performing a time‐lagged detrended cross‐correlation analysis on years‐long time series from the volcanoes of Piton de la Fournaise and Mayotte. At Piton de la Fournaise, soil CO2 variations correlate best with air temperature variations (0.81) and water table variations (0.74). In Mayotte, soil CO2 variations correlate best with atmospheric pressure variations (−0.95). We propose that at Piton de la Fournaise, the thick vadose zone and high permeability favor CO2 transfer by thermal convection. Additionally, energy transfer is decoupled from mass transfer. Slow heat transfer from the atmosphere down to the accumulated CO2 layers in the subsurface results in a delayed influence of air temperature and of the water table level on the thermal gradient between the subsurface and the atmosphere, and consequently on the efficiency of the CO2 transfer. In Mayotte, we propose that the thin vadose zone and the presence of a network of large fractures favor CO2 transfer by barometric pumping.
Plain Language Summary
The soil is a major reservoir of gaseous CO2 at the scale of the planet. This soil CO2 is mobile and can escape to the atmosphere and contribute to global warming. It thus important to understand what controls its mobility. In contexts of high soil CO2 contents, environmental parameters can drive soil CO2 transfers toward the atmosphere, but their influence is still poorly understood at timescales beyond a few days. To address this issue, we studied how air temperature, atmospheric pressure, rainfall, and water table level affect soil CO2 efflux in volcanic environments where the soil CO2 content is naturally high due to magmatic degassing. Our study sites are the volcanoes of Piton de la Fournaise and Mayotte. We performed a time‐lagged detrended cross‐correlation analysis which compares the similarity between different time series. We find that air temperature, atmospheric pressure and water table level variations can cause soil CO2 to move toward the surface. The magnitude of their influence and the type of transfers depend on the geological properties of the study sites. We also find that these influences can occur with significant delays of over a hundred days.
Key Points
Air temperature, atmospheric pressure, and water table level influence soil CO2 concentrations at a seasonal scale
The decoupling of heat and mass transfer in the subsurface induces a delayed response of soil CO2 concentrations to environmental forcing
CO2 mass transport at high flux is driven by thermal convection or barometric pumping depending on site properties</description><subject>Air temperature</subject><subject>Atmosphere</subject><subject>Atmospheric pressure</subject><subject>barometric pumping</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Cellular convection</subject><subject>Climate change</subject><subject>Convection</subject><subject>Correlation analysis</subject><subject>Degassing</subject><subject>Efflux</subject><subject>Energy transfer</subject><subject>Environmental control</subject><subject>Environmental factors</subject><subject>Fractures</subject><subject>Free convection</subject><subject>Global warming</subject><subject>Groundwater table</subject><subject>Heat transfer</subject><subject>Influence</subject><subject>Mass transfer</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Piton de la Fournaise</subject><subject>Precipitation</subject><subject>Rainfall</subject><subject>Reservoirs</subject><subject>Sciences of the Universe</subject><subject>Soil</subject><subject>soil CO2</subject><subject>Soil dynamics</subject><subject>Soil permeability</subject><subject>Soil surfaces</subject><subject>Soil temperature</subject><subject>Soil water movement</subject><subject>Soils</subject><subject>Stream degassing</subject><subject>Temperature gradients</subject><subject>thermal convection</subject><subject>Time series</subject><subject>Vadose water</subject><subject>vadose zone</subject><subject>Variation</subject><subject>Volcanic activity</subject><subject>Volcanic environments</subject><subject>volcanic gases</subject><subject>Volcanic soils</subject><subject>Volcanoes</subject><subject>Water</subject><subject>Water table</subject><issn>2169-8953</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpNkUtLAzEQxxdRsNTe_AABLypU89jdbo6l9mGpVKx6DdNs1qakSd3sVhe_vLEVcS4z8-c3LyaKzgm-IZjyW4opm44x7sWYH0UtSlLezXhKjv_ihJ1GHe_XOFgWJEJa0ddCgXcWDBranS6d3ShbhWzgbFU645GzaOF0EOYU3TUWNlp6BBUCNNFvq708MvUnWuhKeXT5qKtQkStkAI1cXVrQXiGwOXqAxlWVQq_OSLBO-auz6KQA41Xn17ejl9HweTDpzubj-0F_1l2xsGl3SQtOih7NZM6oSlkMKqwey56UjKuEp0VWyDTOiqUsAtLLpaIFqCTJM8iXPGft6PrQdwVGbEu9gbIRDrSY9GdCW18LHJMkSXmyIwG-OMDb0r3XyldivT_DeEEzhhkNs1mg2IH60EY1f00JFj-_EP9_IabjpzGlCcbsGxuifNI</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Bénard, B.</creator><creator>Di Muro, A.</creator><creator>Liuzzo, M.</creator><creator>Gurrieri, S.</creator><creator>Boissier, P.</creator><creator>Brunet, C.</creator><creator>Desfete, N.</creator><creator>Kowalski, P.</creator><creator>Lauret, F.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3186-8534</orcidid><orcidid>https://orcid.org/0000-0002-3099-7505</orcidid><orcidid>https://orcid.org/0000-0003-0715-5729</orcidid><orcidid>https://orcid.org/0000-0002-9512-529X</orcidid><orcidid>https://orcid.org/0000-0003-4085-0440</orcidid><orcidid>https://orcid.org/0000-0002-7635-1283</orcidid></search><sort><creationdate>202306</creationdate><title>Seasonal Environmental Controls on Soil CO2 Dynamics at a High CO2 Flux Sites (Piton de la Fournaise and Mayotte Volcanoes)</title><author>Bénard, B. ; Di Muro, A. ; Liuzzo, M. ; Gurrieri, S. ; Boissier, P. ; Brunet, C. ; Desfete, N. ; Kowalski, P. ; Lauret, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3000-b2f91f728cd32e634ae9114c7cc39e596f8fc648fbcfcd37dce2fae55d8adb9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air temperature</topic><topic>Atmosphere</topic><topic>Atmospheric pressure</topic><topic>barometric pumping</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Cellular convection</topic><topic>Climate change</topic><topic>Convection</topic><topic>Correlation analysis</topic><topic>Degassing</topic><topic>Efflux</topic><topic>Energy transfer</topic><topic>Environmental control</topic><topic>Environmental factors</topic><topic>Fractures</topic><topic>Free convection</topic><topic>Global warming</topic><topic>Groundwater table</topic><topic>Heat transfer</topic><topic>Influence</topic><topic>Mass transfer</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Piton de la Fournaise</topic><topic>Precipitation</topic><topic>Rainfall</topic><topic>Reservoirs</topic><topic>Sciences of the Universe</topic><topic>Soil</topic><topic>soil CO2</topic><topic>Soil dynamics</topic><topic>Soil permeability</topic><topic>Soil surfaces</topic><topic>Soil temperature</topic><topic>Soil water movement</topic><topic>Soils</topic><topic>Stream degassing</topic><topic>Temperature gradients</topic><topic>thermal convection</topic><topic>Time series</topic><topic>Vadose water</topic><topic>vadose zone</topic><topic>Variation</topic><topic>Volcanic activity</topic><topic>Volcanic environments</topic><topic>volcanic gases</topic><topic>Volcanic soils</topic><topic>Volcanoes</topic><topic>Water</topic><topic>Water table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bénard, B.</creatorcontrib><creatorcontrib>Di Muro, A.</creatorcontrib><creatorcontrib>Liuzzo, M.</creatorcontrib><creatorcontrib>Gurrieri, S.</creatorcontrib><creatorcontrib>Boissier, P.</creatorcontrib><creatorcontrib>Brunet, C.</creatorcontrib><creatorcontrib>Desfete, N.</creatorcontrib><creatorcontrib>Kowalski, P.</creatorcontrib><creatorcontrib>Lauret, F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bénard, B.</au><au>Di Muro, A.</au><au>Liuzzo, M.</au><au>Gurrieri, S.</au><au>Boissier, P.</au><au>Brunet, C.</au><au>Desfete, N.</au><au>Kowalski, P.</au><au>Lauret, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal Environmental Controls on Soil CO2 Dynamics at a High CO2 Flux Sites (Piton de la Fournaise and Mayotte Volcanoes)</atitle><jtitle>Journal of geophysical research. Biogeosciences</jtitle><date>2023-06</date><risdate>2023</risdate><volume>128</volume><issue>6</issue><epage>n/a</epage><issn>2169-8953</issn><eissn>2169-8961</eissn><abstract>Environmental parameters drive seasonal soil CO2 efflux toward the atmosphere. However, their influence is not fully understood in contexts of high CO2 fluxes where CO2 accumulates in the subsurface. A prime example are volcanoes subject to continuous CO2 diffuse degassing rising from deep magmatic reservoirs, through the subsurface and up to the atmosphere. For many of these volcanoes where soil CO2 is monitored, a seasonal influence of the atmosphere and water table is observed but not characterized. Here, we compare variations of air temperature, atmospheric pressure, rainfall and water table level with near‐surface soil CO2 concentration by performing a time‐lagged detrended cross‐correlation analysis on years‐long time series from the volcanoes of Piton de la Fournaise and Mayotte. At Piton de la Fournaise, soil CO2 variations correlate best with air temperature variations (0.81) and water table variations (0.74). In Mayotte, soil CO2 variations correlate best with atmospheric pressure variations (−0.95). We propose that at Piton de la Fournaise, the thick vadose zone and high permeability favor CO2 transfer by thermal convection. Additionally, energy transfer is decoupled from mass transfer. Slow heat transfer from the atmosphere down to the accumulated CO2 layers in the subsurface results in a delayed influence of air temperature and of the water table level on the thermal gradient between the subsurface and the atmosphere, and consequently on the efficiency of the CO2 transfer. In Mayotte, we propose that the thin vadose zone and the presence of a network of large fractures favor CO2 transfer by barometric pumping.
Plain Language Summary
The soil is a major reservoir of gaseous CO2 at the scale of the planet. This soil CO2 is mobile and can escape to the atmosphere and contribute to global warming. It thus important to understand what controls its mobility. In contexts of high soil CO2 contents, environmental parameters can drive soil CO2 transfers toward the atmosphere, but their influence is still poorly understood at timescales beyond a few days. To address this issue, we studied how air temperature, atmospheric pressure, rainfall, and water table level affect soil CO2 efflux in volcanic environments where the soil CO2 content is naturally high due to magmatic degassing. Our study sites are the volcanoes of Piton de la Fournaise and Mayotte. We performed a time‐lagged detrended cross‐correlation analysis which compares the similarity between different time series. We find that air temperature, atmospheric pressure and water table level variations can cause soil CO2 to move toward the surface. The magnitude of their influence and the type of transfers depend on the geological properties of the study sites. We also find that these influences can occur with significant delays of over a hundred days.
Key Points
Air temperature, atmospheric pressure, and water table level influence soil CO2 concentrations at a seasonal scale
The decoupling of heat and mass transfer in the subsurface induces a delayed response of soil CO2 concentrations to environmental forcing
CO2 mass transport at high flux is driven by thermal convection or barometric pumping depending on site properties</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023JG007409</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3186-8534</orcidid><orcidid>https://orcid.org/0000-0002-3099-7505</orcidid><orcidid>https://orcid.org/0000-0003-0715-5729</orcidid><orcidid>https://orcid.org/0000-0002-9512-529X</orcidid><orcidid>https://orcid.org/0000-0003-4085-0440</orcidid><orcidid>https://orcid.org/0000-0002-7635-1283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-8953 |
ispartof | Journal of geophysical research. Biogeosciences, 2023-06, Vol.128 (6), p.n/a |
issn | 2169-8953 2169-8961 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_04155695v1 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Air temperature Atmosphere Atmospheric pressure barometric pumping Carbon dioxide Carbon dioxide concentration Cellular convection Climate change Convection Correlation analysis Degassing Efflux Energy transfer Environmental control Environmental factors Fractures Free convection Global warming Groundwater table Heat transfer Influence Mass transfer Parameters Permeability Piton de la Fournaise Precipitation Rainfall Reservoirs Sciences of the Universe Soil soil CO2 Soil dynamics Soil permeability Soil surfaces Soil temperature Soil water movement Soils Stream degassing Temperature gradients thermal convection Time series Vadose water vadose zone Variation Volcanic activity Volcanic environments volcanic gases Volcanic soils Volcanoes Water Water table |
title | Seasonal Environmental Controls on Soil CO2 Dynamics at a High CO2 Flux Sites (Piton de la Fournaise and Mayotte Volcanoes) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20Environmental%20Controls%20on%20Soil%20CO2%20Dynamics%20at%20a%20High%20CO2%20Flux%20Sites%20(Piton%20de%20la%20Fournaise%20and%20Mayotte%20Volcanoes)&rft.jtitle=Journal%20of%20geophysical%20research.%20Biogeosciences&rft.au=B%C3%A9nard,%20B.&rft.date=2023-06&rft.volume=128&rft.issue=6&rft.epage=n/a&rft.issn=2169-8953&rft.eissn=2169-8961&rft_id=info:doi/10.1029/2023JG007409&rft_dat=%3Cproquest_hal_p%3E2830329113%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830329113&rft_id=info:pmid/&rfr_iscdi=true |