Magnetic Fields and Plasma Motions in a Hybrid Martian Magnetosphere
The Martian magnetosphere contains elements of induced and intrinsic origin. To display them one must use different coordinate systems. Although the solar‐electric coordinate system (Mars Solar Electric [MSE]) adequately describes the main features of the induced magnetosphere, it removes/suppresses...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2023-01, Vol.128 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of geophysical research. Space physics |
container_volume | 128 |
creator | Dubinin, E. Fraenz, M. Pätzold, M. Tellmann, S. Modolo, R. DiBraccio, G. McFadden, J. Espley, J. |
description | The Martian magnetosphere contains elements of induced and intrinsic origin. To display them one must use different coordinate systems. Although the solar‐electric coordinate system (Mars Solar Electric [MSE]) adequately describes the main features of the induced magnetosphere, it removes/suppresses aspects caused by the crustal magnetic sources while rotating the spacecraft position to the MSE‐coordinate system and averaging over many orbits. On the other hand, to observe effects of the crustal field one should use the solar orbital coordinates (Mars Solar Orbital [MSO]). To find a compromise and keeping in mind that the most probable value of the clock angle of the interplanetary magnetic field (IMF) on the Mars orbit is ∼90° we can consider separately cases with positive and negative By components of the IMF. It is shown that dynamics of ion fluxes in the distant regions of the magnetosphere is mainly controlled by induced features. However, reconnection of the draping IMF with crustal field leads to a twisting of the classical draping configuration. Despite of the very intricate local geometry of the crustal field, the low‐order harmonics of the magnetic field and mainly the dipole component determine the reconnection sites, at least, statistically for many Mars rotations. For different signs of the By component of the IMF these sites occur either in the +Y‐MSO or −Y‐MSO hemispheres. As a result, statistically the magnetosphere of Mars looks like a hybrid magnetosphere formed during the solar wind interaction with the obstacle which simultaneously contains an extended ionosphere and a weak dipole magnetic field.
Key Points
The Martian magnetosphere contains elements of induced and intrinsic origin
Dynamics of ion fluxes in the magnetic tail, is mainly controlled by induced features
Reconnection of the interplanetary magnetic field with low‐order harmonics of the crustal field leads to twisting of the tail and formation of hybrid magnetosphere |
doi_str_mv | 10.1029/2022JA030575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03912959v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769186441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3800-8982834c5790d47103456247ec5db3d4c67f069db8502d99c6ebae31e4e5c3193</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGp3PkDAnTia60yyHKptlRZFdB0ySWpTpjM1mSp9e1NGxZVn8x8O37n9AJxjdI0RkTcEEfJQIop4wY_AgOBcZpIhcvyTU4FOwSjGNUohUgnzAbhd6LfGdd7AiXe1jVA3Fj7VOm40XLSdb5sIfQM1nO2r4C1c6NB53cC-rY3blQvuDJwsdR3d6FuH4HVy9zKeZfPH6f24nGcm7UaZkIIIygwvJLKswIgynhNWOMNtRS0zebFEubSV4IhYKU3uKu0odsxxQ7GkQ3DZz13pWm2D3-iwV632albOlW_iTiEqMZFcfuAEX_TwNrTvOxc7tW53oUn3KVKk50XO2IG66ikT2hiDW_7OxUgdfFV_fU047fFPX7v9v6x6mD6XSQWiX66idY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769186441</pqid></control><display><type>article</type><title>Magnetic Fields and Plasma Motions in a Hybrid Martian Magnetosphere</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Dubinin, E. ; Fraenz, M. ; Pätzold, M. ; Tellmann, S. ; Modolo, R. ; DiBraccio, G. ; McFadden, J. ; Espley, J.</creator><creatorcontrib>Dubinin, E. ; Fraenz, M. ; Pätzold, M. ; Tellmann, S. ; Modolo, R. ; DiBraccio, G. ; McFadden, J. ; Espley, J.</creatorcontrib><description>The Martian magnetosphere contains elements of induced and intrinsic origin. To display them one must use different coordinate systems. Although the solar‐electric coordinate system (Mars Solar Electric [MSE]) adequately describes the main features of the induced magnetosphere, it removes/suppresses aspects caused by the crustal magnetic sources while rotating the spacecraft position to the MSE‐coordinate system and averaging over many orbits. On the other hand, to observe effects of the crustal field one should use the solar orbital coordinates (Mars Solar Orbital [MSO]). To find a compromise and keeping in mind that the most probable value of the clock angle of the interplanetary magnetic field (IMF) on the Mars orbit is ∼90° we can consider separately cases with positive and negative By components of the IMF. It is shown that dynamics of ion fluxes in the distant regions of the magnetosphere is mainly controlled by induced features. However, reconnection of the draping IMF with crustal field leads to a twisting of the classical draping configuration. Despite of the very intricate local geometry of the crustal field, the low‐order harmonics of the magnetic field and mainly the dipole component determine the reconnection sites, at least, statistically for many Mars rotations. For different signs of the By component of the IMF these sites occur either in the +Y‐MSO or −Y‐MSO hemispheres. As a result, statistically the magnetosphere of Mars looks like a hybrid magnetosphere formed during the solar wind interaction with the obstacle which simultaneously contains an extended ionosphere and a weak dipole magnetic field.
Key Points
The Martian magnetosphere contains elements of induced and intrinsic origin
Dynamics of ion fluxes in the magnetic tail, is mainly controlled by induced features
Reconnection of the interplanetary magnetic field with low‐order harmonics of the crustal field leads to twisting of the tail and formation of hybrid magnetosphere</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2022JA030575</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Coordinate systems ; Coordinates ; Dipoles ; Hemispheres ; Interplanetary magnetic field ; Ion flux ; Ion fluxes ; Ionosphere ; Magnetic fields ; Mars ; Planetary magnetic fields ; Planetary magnetospheres ; Sciences of the Universe ; Solar orbits ; Solar wind ; Spacecraft</subject><ispartof>Journal of geophysical research. Space physics, 2023-01, Vol.128 (1), p.n/a</ispartof><rights>2022 The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3800-8982834c5790d47103456247ec5db3d4c67f069db8502d99c6ebae31e4e5c3193</citedby><cites>FETCH-LOGICAL-c3800-8982834c5790d47103456247ec5db3d4c67f069db8502d99c6ebae31e4e5c3193</cites><orcidid>0000-0002-2778-4998 ; 0000-0001-5437-9923 ; 0000-0001-8619-187X ; 0000-0003-4521-2931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022JA030575$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022JA030575$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,4024,27923,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03912959$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubinin, E.</creatorcontrib><creatorcontrib>Fraenz, M.</creatorcontrib><creatorcontrib>Pätzold, M.</creatorcontrib><creatorcontrib>Tellmann, S.</creatorcontrib><creatorcontrib>Modolo, R.</creatorcontrib><creatorcontrib>DiBraccio, G.</creatorcontrib><creatorcontrib>McFadden, J.</creatorcontrib><creatorcontrib>Espley, J.</creatorcontrib><title>Magnetic Fields and Plasma Motions in a Hybrid Martian Magnetosphere</title><title>Journal of geophysical research. Space physics</title><description>The Martian magnetosphere contains elements of induced and intrinsic origin. To display them one must use different coordinate systems. Although the solar‐electric coordinate system (Mars Solar Electric [MSE]) adequately describes the main features of the induced magnetosphere, it removes/suppresses aspects caused by the crustal magnetic sources while rotating the spacecraft position to the MSE‐coordinate system and averaging over many orbits. On the other hand, to observe effects of the crustal field one should use the solar orbital coordinates (Mars Solar Orbital [MSO]). To find a compromise and keeping in mind that the most probable value of the clock angle of the interplanetary magnetic field (IMF) on the Mars orbit is ∼90° we can consider separately cases with positive and negative By components of the IMF. It is shown that dynamics of ion fluxes in the distant regions of the magnetosphere is mainly controlled by induced features. However, reconnection of the draping IMF with crustal field leads to a twisting of the classical draping configuration. Despite of the very intricate local geometry of the crustal field, the low‐order harmonics of the magnetic field and mainly the dipole component determine the reconnection sites, at least, statistically for many Mars rotations. For different signs of the By component of the IMF these sites occur either in the +Y‐MSO or −Y‐MSO hemispheres. As a result, statistically the magnetosphere of Mars looks like a hybrid magnetosphere formed during the solar wind interaction with the obstacle which simultaneously contains an extended ionosphere and a weak dipole magnetic field.
Key Points
The Martian magnetosphere contains elements of induced and intrinsic origin
Dynamics of ion fluxes in the magnetic tail, is mainly controlled by induced features
Reconnection of the interplanetary magnetic field with low‐order harmonics of the crustal field leads to twisting of the tail and formation of hybrid magnetosphere</description><subject>Coordinate systems</subject><subject>Coordinates</subject><subject>Dipoles</subject><subject>Hemispheres</subject><subject>Interplanetary magnetic field</subject><subject>Ion flux</subject><subject>Ion fluxes</subject><subject>Ionosphere</subject><subject>Magnetic fields</subject><subject>Mars</subject><subject>Planetary magnetic fields</subject><subject>Planetary magnetospheres</subject><subject>Sciences of the Universe</subject><subject>Solar orbits</subject><subject>Solar wind</subject><subject>Spacecraft</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kMtKAzEUhoMoWGp3PkDAnTia60yyHKptlRZFdB0ySWpTpjM1mSp9e1NGxZVn8x8O37n9AJxjdI0RkTcEEfJQIop4wY_AgOBcZpIhcvyTU4FOwSjGNUohUgnzAbhd6LfGdd7AiXe1jVA3Fj7VOm40XLSdb5sIfQM1nO2r4C1c6NB53cC-rY3blQvuDJwsdR3d6FuH4HVy9zKeZfPH6f24nGcm7UaZkIIIygwvJLKswIgynhNWOMNtRS0zebFEubSV4IhYKU3uKu0odsxxQ7GkQ3DZz13pWm2D3-iwV632albOlW_iTiEqMZFcfuAEX_TwNrTvOxc7tW53oUn3KVKk50XO2IG66ikT2hiDW_7OxUgdfFV_fU047fFPX7v9v6x6mD6XSQWiX66idY4</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Dubinin, E.</creator><creator>Fraenz, M.</creator><creator>Pätzold, M.</creator><creator>Tellmann, S.</creator><creator>Modolo, R.</creator><creator>DiBraccio, G.</creator><creator>McFadden, J.</creator><creator>Espley, J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2778-4998</orcidid><orcidid>https://orcid.org/0000-0001-5437-9923</orcidid><orcidid>https://orcid.org/0000-0001-8619-187X</orcidid><orcidid>https://orcid.org/0000-0003-4521-2931</orcidid></search><sort><creationdate>202301</creationdate><title>Magnetic Fields and Plasma Motions in a Hybrid Martian Magnetosphere</title><author>Dubinin, E. ; Fraenz, M. ; Pätzold, M. ; Tellmann, S. ; Modolo, R. ; DiBraccio, G. ; McFadden, J. ; Espley, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3800-8982834c5790d47103456247ec5db3d4c67f069db8502d99c6ebae31e4e5c3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coordinate systems</topic><topic>Coordinates</topic><topic>Dipoles</topic><topic>Hemispheres</topic><topic>Interplanetary magnetic field</topic><topic>Ion flux</topic><topic>Ion fluxes</topic><topic>Ionosphere</topic><topic>Magnetic fields</topic><topic>Mars</topic><topic>Planetary magnetic fields</topic><topic>Planetary magnetospheres</topic><topic>Sciences of the Universe</topic><topic>Solar orbits</topic><topic>Solar wind</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubinin, E.</creatorcontrib><creatorcontrib>Fraenz, M.</creatorcontrib><creatorcontrib>Pätzold, M.</creatorcontrib><creatorcontrib>Tellmann, S.</creatorcontrib><creatorcontrib>Modolo, R.</creatorcontrib><creatorcontrib>DiBraccio, G.</creatorcontrib><creatorcontrib>McFadden, J.</creatorcontrib><creatorcontrib>Espley, J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubinin, E.</au><au>Fraenz, M.</au><au>Pätzold, M.</au><au>Tellmann, S.</au><au>Modolo, R.</au><au>DiBraccio, G.</au><au>McFadden, J.</au><au>Espley, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Fields and Plasma Motions in a Hybrid Martian Magnetosphere</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2023-01</date><risdate>2023</risdate><volume>128</volume><issue>1</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>The Martian magnetosphere contains elements of induced and intrinsic origin. To display them one must use different coordinate systems. Although the solar‐electric coordinate system (Mars Solar Electric [MSE]) adequately describes the main features of the induced magnetosphere, it removes/suppresses aspects caused by the crustal magnetic sources while rotating the spacecraft position to the MSE‐coordinate system and averaging over many orbits. On the other hand, to observe effects of the crustal field one should use the solar orbital coordinates (Mars Solar Orbital [MSO]). To find a compromise and keeping in mind that the most probable value of the clock angle of the interplanetary magnetic field (IMF) on the Mars orbit is ∼90° we can consider separately cases with positive and negative By components of the IMF. It is shown that dynamics of ion fluxes in the distant regions of the magnetosphere is mainly controlled by induced features. However, reconnection of the draping IMF with crustal field leads to a twisting of the classical draping configuration. Despite of the very intricate local geometry of the crustal field, the low‐order harmonics of the magnetic field and mainly the dipole component determine the reconnection sites, at least, statistically for many Mars rotations. For different signs of the By component of the IMF these sites occur either in the +Y‐MSO or −Y‐MSO hemispheres. As a result, statistically the magnetosphere of Mars looks like a hybrid magnetosphere formed during the solar wind interaction with the obstacle which simultaneously contains an extended ionosphere and a weak dipole magnetic field.
Key Points
The Martian magnetosphere contains elements of induced and intrinsic origin
Dynamics of ion fluxes in the magnetic tail, is mainly controlled by induced features
Reconnection of the interplanetary magnetic field with low‐order harmonics of the crustal field leads to twisting of the tail and formation of hybrid magnetosphere</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2022JA030575</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2778-4998</orcidid><orcidid>https://orcid.org/0000-0001-5437-9923</orcidid><orcidid>https://orcid.org/0000-0001-8619-187X</orcidid><orcidid>https://orcid.org/0000-0003-4521-2931</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2023-01, Vol.128 (1), p.n/a |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03912959v1 |
source | Wiley Free Content; Wiley Online Library All Journals |
subjects | Coordinate systems Coordinates Dipoles Hemispheres Interplanetary magnetic field Ion flux Ion fluxes Ionosphere Magnetic fields Mars Planetary magnetic fields Planetary magnetospheres Sciences of the Universe Solar orbits Solar wind Spacecraft |
title | Magnetic Fields and Plasma Motions in a Hybrid Martian Magnetosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Fields%20and%20Plasma%20Motions%20in%20a%20Hybrid%20Martian%20Magnetosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Dubinin,%20E.&rft.date=2023-01&rft.volume=128&rft.issue=1&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2022JA030575&rft_dat=%3Cproquest_hal_p%3E2769186441%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769186441&rft_id=info:pmid/&rfr_iscdi=true |