Data Fusion of Total Solar Irradiance Composite Time Series Using 41 Years of Satellite Measurements

Since the late 1970s, successive satellite missions have been monitoring the sun's activity and recording the total solar irradiance (TSI). Some of these measurements have lasted for more than a decade. In order to obtain a seamless record whose duration exceeds that of the individual instrumen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2022-07, Vol.127 (13), p.n/a
Hauptverfasser: Montillet, J.‐P., Finsterle, W., Kermarrec, G., Sikonja, R., Haberreiter, M., Schmutz, W., Dudok de Wit, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Journal of geophysical research. Atmospheres
container_volume 127
creator Montillet, J.‐P.
Finsterle, W.
Kermarrec, G.
Sikonja, R.
Haberreiter, M.
Schmutz, W.
Dudok de Wit, T.
description Since the late 1970s, successive satellite missions have been monitoring the sun's activity and recording the total solar irradiance (TSI). Some of these measurements have lasted for more than a decade. In order to obtain a seamless record whose duration exceeds that of the individual instruments, the time series have to be merged. Climate models can be better validated using such long TSI time series which can also help to provide stronger constraints on past climate reconstructions (e.g., back to the Maunder minimum). We propose a 3‐step method based on data fusion, including a stochastic noise model to take into account short and long‐term correlations. Compared with previous products scaled at the nominal TSI value of ∼1361 W/m2, the difference is below 0.2 W/m2 in terms of solar minima. Next, we model the frequency spectrum of this 41‐year TSI composite time series with a Generalized Gauss‐Markov model to help describe an observed flattening at high frequencies. It allows us to fit a linear trend into these TSI time series by joint inversion with the stochastic noise model via a maximum‐likelihood estimator. Our results show that the amplitude of such trend is ∼−0.004 ± 0.004 W/(m2yr) for the period 1980–2021. These results are compared with the difference of irradiance values estimated from two consecutive solar minima. We conclude that the trend in these composite time series is mostly an artifact due to the colored noise. Key Points Application of data fusion to merge 41 years of satellite observations into a composite total solar irradiance time series A comprehensive time‐frequency analysis to characterize the solar cycle and the stochastic noise Investigation of variations at solar minima to distinguish between stochastic noise and underlying phenomena linked to the solar activity
doi_str_mv 10.1029/2021JD036146
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03857164v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688598076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3422-58b061dc97b778764aaac7c056c74daa3ded1982ba8d87e7e76dfc8b20f88e6d3</originalsourceid><addsrcrecordid>eNp90M1KAzEQAOBFFJTamw8Q8CZWk2w2yR6ltT9SEWwFPYXpZlYj201NdpW-vVsq4smZw8zhm2GYJDlj9IpRnl9zytndiKaSCXmQnHAm84HOc3n426vn46Qf4zvtQtNUZOIksSNogIzb6HxNfEmWvoGKLHwFgcxCAOugLpAM_Xrjo2uQLN0ayQKDw0ieoqtfiWDkBSHE3fgCGqyqnbtHiG3ANdZNPE2OSqgi9n9qL3ka3y6H08H8YTIb3swHRSo4H2R6RSWzRa5WSmklBQAUqqCZLJSwAKlFy3LNV6CtVtiltGWhV5yWWqO0aS-52O99g8psgltD2BoPzkxv5sbVsTU01ZliUnyyDp_v8Sb4jxZjY959G-ruPsOl1lmuqZKdutyrIvgYA5a_exk1u7-bv3_veLrnX67C7b_W3E0eR5mmgqffZKyCsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688598076</pqid></control><display><type>article</type><title>Data Fusion of Total Solar Irradiance Composite Time Series Using 41 Years of Satellite Measurements</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Montillet, J.‐P. ; Finsterle, W. ; Kermarrec, G. ; Sikonja, R. ; Haberreiter, M. ; Schmutz, W. ; Dudok de Wit, T.</creator><creatorcontrib>Montillet, J.‐P. ; Finsterle, W. ; Kermarrec, G. ; Sikonja, R. ; Haberreiter, M. ; Schmutz, W. ; Dudok de Wit, T.</creatorcontrib><description>Since the late 1970s, successive satellite missions have been monitoring the sun's activity and recording the total solar irradiance (TSI). Some of these measurements have lasted for more than a decade. In order to obtain a seamless record whose duration exceeds that of the individual instruments, the time series have to be merged. Climate models can be better validated using such long TSI time series which can also help to provide stronger constraints on past climate reconstructions (e.g., back to the Maunder minimum). We propose a 3‐step method based on data fusion, including a stochastic noise model to take into account short and long‐term correlations. Compared with previous products scaled at the nominal TSI value of ∼1361 W/m2, the difference is below 0.2 W/m2 in terms of solar minima. Next, we model the frequency spectrum of this 41‐year TSI composite time series with a Generalized Gauss‐Markov model to help describe an observed flattening at high frequencies. It allows us to fit a linear trend into these TSI time series by joint inversion with the stochastic noise model via a maximum‐likelihood estimator. Our results show that the amplitude of such trend is ∼−0.004 ± 0.004 W/(m2yr) for the period 1980–2021. These results are compared with the difference of irradiance values estimated from two consecutive solar minima. We conclude that the trend in these composite time series is mostly an artifact due to the colored noise. Key Points Application of data fusion to merge 41 years of satellite observations into a composite total solar irradiance time series A comprehensive time‐frequency analysis to characterize the solar cycle and the stochastic noise Investigation of variations at solar minima to distinguish between stochastic noise and underlying phenomena linked to the solar activity</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2021JD036146</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Climate ; Climate models ; Colour ; data fusion ; Data integration ; Frequency spectra ; Frequency spectrum ; Geophysics ; Instruments ; Irradiance ; Markov chains ; Minima ; Modelling ; Noise ; Satellites ; Sciences of the Universe ; Solar irradiance ; Solar minimum ; solar physics ; stochastic processes ; Time series ; time series analysis ; total solar irradiance</subject><ispartof>Journal of geophysical research. Atmospheres, 2022-07, Vol.127 (13), p.n/a</ispartof><rights>2022. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3422-58b061dc97b778764aaac7c056c74daa3ded1982ba8d87e7e76dfc8b20f88e6d3</citedby><cites>FETCH-LOGICAL-c3422-58b061dc97b778764aaac7c056c74daa3ded1982ba8d87e7e76dfc8b20f88e6d3</cites><orcidid>0000-0001-5986-5269 ; 0000-0003-1159-5639 ; 0000-0002-4401-0943 ; 0000-0002-8978-4651 ; 0000-0001-7439-7862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JD036146$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JD036146$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03857164$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Montillet, J.‐P.</creatorcontrib><creatorcontrib>Finsterle, W.</creatorcontrib><creatorcontrib>Kermarrec, G.</creatorcontrib><creatorcontrib>Sikonja, R.</creatorcontrib><creatorcontrib>Haberreiter, M.</creatorcontrib><creatorcontrib>Schmutz, W.</creatorcontrib><creatorcontrib>Dudok de Wit, T.</creatorcontrib><title>Data Fusion of Total Solar Irradiance Composite Time Series Using 41 Years of Satellite Measurements</title><title>Journal of geophysical research. Atmospheres</title><description>Since the late 1970s, successive satellite missions have been monitoring the sun's activity and recording the total solar irradiance (TSI). Some of these measurements have lasted for more than a decade. In order to obtain a seamless record whose duration exceeds that of the individual instruments, the time series have to be merged. Climate models can be better validated using such long TSI time series which can also help to provide stronger constraints on past climate reconstructions (e.g., back to the Maunder minimum). We propose a 3‐step method based on data fusion, including a stochastic noise model to take into account short and long‐term correlations. Compared with previous products scaled at the nominal TSI value of ∼1361 W/m2, the difference is below 0.2 W/m2 in terms of solar minima. Next, we model the frequency spectrum of this 41‐year TSI composite time series with a Generalized Gauss‐Markov model to help describe an observed flattening at high frequencies. It allows us to fit a linear trend into these TSI time series by joint inversion with the stochastic noise model via a maximum‐likelihood estimator. Our results show that the amplitude of such trend is ∼−0.004 ± 0.004 W/(m2yr) for the period 1980–2021. These results are compared with the difference of irradiance values estimated from two consecutive solar minima. We conclude that the trend in these composite time series is mostly an artifact due to the colored noise. Key Points Application of data fusion to merge 41 years of satellite observations into a composite total solar irradiance time series A comprehensive time‐frequency analysis to characterize the solar cycle and the stochastic noise Investigation of variations at solar minima to distinguish between stochastic noise and underlying phenomena linked to the solar activity</description><subject>Climate</subject><subject>Climate models</subject><subject>Colour</subject><subject>data fusion</subject><subject>Data integration</subject><subject>Frequency spectra</subject><subject>Frequency spectrum</subject><subject>Geophysics</subject><subject>Instruments</subject><subject>Irradiance</subject><subject>Markov chains</subject><subject>Minima</subject><subject>Modelling</subject><subject>Noise</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Solar irradiance</subject><subject>Solar minimum</subject><subject>solar physics</subject><subject>stochastic processes</subject><subject>Time series</subject><subject>time series analysis</subject><subject>total solar irradiance</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQAOBFFJTamw8Q8CZWk2w2yR6ltT9SEWwFPYXpZlYj201NdpW-vVsq4smZw8zhm2GYJDlj9IpRnl9zytndiKaSCXmQnHAm84HOc3n426vn46Qf4zvtQtNUZOIksSNogIzb6HxNfEmWvoGKLHwFgcxCAOugLpAM_Xrjo2uQLN0ayQKDw0ieoqtfiWDkBSHE3fgCGqyqnbtHiG3ANdZNPE2OSqgi9n9qL3ka3y6H08H8YTIb3swHRSo4H2R6RSWzRa5WSmklBQAUqqCZLJSwAKlFy3LNV6CtVtiltGWhV5yWWqO0aS-52O99g8psgltD2BoPzkxv5sbVsTU01ZliUnyyDp_v8Sb4jxZjY959G-ruPsOl1lmuqZKdutyrIvgYA5a_exk1u7-bv3_veLrnX67C7b_W3E0eR5mmgqffZKyCsA</recordid><startdate>20220716</startdate><enddate>20220716</enddate><creator>Montillet, J.‐P.</creator><creator>Finsterle, W.</creator><creator>Kermarrec, G.</creator><creator>Sikonja, R.</creator><creator>Haberreiter, M.</creator><creator>Schmutz, W.</creator><creator>Dudok de Wit, T.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5986-5269</orcidid><orcidid>https://orcid.org/0000-0003-1159-5639</orcidid><orcidid>https://orcid.org/0000-0002-4401-0943</orcidid><orcidid>https://orcid.org/0000-0002-8978-4651</orcidid><orcidid>https://orcid.org/0000-0001-7439-7862</orcidid></search><sort><creationdate>20220716</creationdate><title>Data Fusion of Total Solar Irradiance Composite Time Series Using 41 Years of Satellite Measurements</title><author>Montillet, J.‐P. ; Finsterle, W. ; Kermarrec, G. ; Sikonja, R. ; Haberreiter, M. ; Schmutz, W. ; Dudok de Wit, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3422-58b061dc97b778764aaac7c056c74daa3ded1982ba8d87e7e76dfc8b20f88e6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Climate</topic><topic>Climate models</topic><topic>Colour</topic><topic>data fusion</topic><topic>Data integration</topic><topic>Frequency spectra</topic><topic>Frequency spectrum</topic><topic>Geophysics</topic><topic>Instruments</topic><topic>Irradiance</topic><topic>Markov chains</topic><topic>Minima</topic><topic>Modelling</topic><topic>Noise</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Solar irradiance</topic><topic>Solar minimum</topic><topic>solar physics</topic><topic>stochastic processes</topic><topic>Time series</topic><topic>time series analysis</topic><topic>total solar irradiance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montillet, J.‐P.</creatorcontrib><creatorcontrib>Finsterle, W.</creatorcontrib><creatorcontrib>Kermarrec, G.</creatorcontrib><creatorcontrib>Sikonja, R.</creatorcontrib><creatorcontrib>Haberreiter, M.</creatorcontrib><creatorcontrib>Schmutz, W.</creatorcontrib><creatorcontrib>Dudok de Wit, T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montillet, J.‐P.</au><au>Finsterle, W.</au><au>Kermarrec, G.</au><au>Sikonja, R.</au><au>Haberreiter, M.</au><au>Schmutz, W.</au><au>Dudok de Wit, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Fusion of Total Solar Irradiance Composite Time Series Using 41 Years of Satellite Measurements</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2022-07-16</date><risdate>2022</risdate><volume>127</volume><issue>13</issue><epage>n/a</epage><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Since the late 1970s, successive satellite missions have been monitoring the sun's activity and recording the total solar irradiance (TSI). Some of these measurements have lasted for more than a decade. In order to obtain a seamless record whose duration exceeds that of the individual instruments, the time series have to be merged. Climate models can be better validated using such long TSI time series which can also help to provide stronger constraints on past climate reconstructions (e.g., back to the Maunder minimum). We propose a 3‐step method based on data fusion, including a stochastic noise model to take into account short and long‐term correlations. Compared with previous products scaled at the nominal TSI value of ∼1361 W/m2, the difference is below 0.2 W/m2 in terms of solar minima. Next, we model the frequency spectrum of this 41‐year TSI composite time series with a Generalized Gauss‐Markov model to help describe an observed flattening at high frequencies. It allows us to fit a linear trend into these TSI time series by joint inversion with the stochastic noise model via a maximum‐likelihood estimator. Our results show that the amplitude of such trend is ∼−0.004 ± 0.004 W/(m2yr) for the period 1980–2021. These results are compared with the difference of irradiance values estimated from two consecutive solar minima. We conclude that the trend in these composite time series is mostly an artifact due to the colored noise. Key Points Application of data fusion to merge 41 years of satellite observations into a composite total solar irradiance time series A comprehensive time‐frequency analysis to characterize the solar cycle and the stochastic noise Investigation of variations at solar minima to distinguish between stochastic noise and underlying phenomena linked to the solar activity</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021JD036146</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5986-5269</orcidid><orcidid>https://orcid.org/0000-0003-1159-5639</orcidid><orcidid>https://orcid.org/0000-0002-4401-0943</orcidid><orcidid>https://orcid.org/0000-0002-8978-4651</orcidid><orcidid>https://orcid.org/0000-0001-7439-7862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2022-07, Vol.127 (13), p.n/a
issn 2169-897X
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_insu_03857164v1
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Climate
Climate models
Colour
data fusion
Data integration
Frequency spectra
Frequency spectrum
Geophysics
Instruments
Irradiance
Markov chains
Minima
Modelling
Noise
Satellites
Sciences of the Universe
Solar irradiance
Solar minimum
solar physics
stochastic processes
Time series
time series analysis
total solar irradiance
title Data Fusion of Total Solar Irradiance Composite Time Series Using 41 Years of Satellite Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Fusion%20of%20Total%20Solar%20Irradiance%20Composite%20Time%20Series%20Using%2041%20Years%20of%20Satellite%20Measurements&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Montillet,%20J.%E2%80%90P.&rft.date=2022-07-16&rft.volume=127&rft.issue=13&rft.epage=n/a&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2021JD036146&rft_dat=%3Cproquest_hal_p%3E2688598076%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688598076&rft_id=info:pmid/&rfr_iscdi=true