Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts
Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2022-08, Vol.177 (8), Article 74 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Contributions to mineralogy and petrology |
container_volume | 177 |
creator | Spallanzani, Roberta Koga, Kenneth T. Cichy, Sarah B. Wiedenbeck, Michael Schmidt, Burkhard C. Oelze, Marcus Wilke, Max |
description | Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt% water), having different Li and B contents; these were studied in diffusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700–1250 °C for durations from 0 s to 24 h. From this we determined activation energies for Li and B diffusion of 57 ± 4 kJ/mol and 152 ± 15 kJ/mol with pre-exponential factors of 1.53 × 10
–7
m
2
/s and 3.80 × 10
–8
m
2
/s, respectively. Lithium isotopic fractionation during diffusion gave β values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li diffusivities and isotopic fractionation results differ somewhat from earlier published values, but overall confirm that Li diffusivity increases with water content. Our results on B diffusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confirm that B diffusivity is limited by viscous flow in silicate melts. Our results on Li and B diffusion present a new tool for understanding degassing-related processes, offering a potential geospeedometer to measure volcanic ascent rates. |
doi_str_mv | 10.1007/s00410-022-01937-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03777184v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A711222371</galeid><sourcerecordid>A711222371</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526t-c8e1067d67b102b50d5b030a51ce5fbb4c760e869a1650772e04da34948d0eb73</originalsourceid><addsrcrecordid>eNp9kVFL5DAUhcPiwo66f2CfCvsmVG-SNmkeB1FHGPBFn0PapDMZ2mQ2SYX592asrAiDBBLuzXcu93AQ-oPhGgPwmwhQYSiBkBKwoLwkP9ACVzSXgvEztADI31wI8Qudx7iDXDeiXqDntU1bO42FcrpoffCu0Lbvp2hfbTq8d230ye9tV_RBdcl6p45XYV2xPeigktFF2B78YFNmRjOkeIl-9mqI5vfHe4Fe7u-eb1fl-unh8Xa5LlVNWCq7xmBgXDPeYiBtDbpugYKqcWfqvm2rjjMwDRMKsxo4JwYqrWglqkaDaTm9QFfz3K0a5D7YUYWD9MrK1XItrYuTBMo5x031ijP8d4b3wf-bTExy56fg8n6SMEEahilrPqmNGkye0fuUXY82dnLJMSaEUH6cVZ6gNsaZoAbvTG9z-wt_fYLPR5vRdicFZBZ0wccYTP_fHgZ5TFzOicucuHxPXJIsorMoZthtTPh0-I3qDT_pq4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692861368</pqid></control><display><type>article</type><title>Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts</title><source>SpringerNature Journals</source><creator>Spallanzani, Roberta ; Koga, Kenneth T. ; Cichy, Sarah B. ; Wiedenbeck, Michael ; Schmidt, Burkhard C. ; Oelze, Marcus ; Wilke, Max</creator><creatorcontrib>Spallanzani, Roberta ; Koga, Kenneth T. ; Cichy, Sarah B. ; Wiedenbeck, Michael ; Schmidt, Burkhard C. ; Oelze, Marcus ; Wilke, Max</creatorcontrib><description>Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt% water), having different Li and B contents; these were studied in diffusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700–1250 °C for durations from 0 s to 24 h. From this we determined activation energies for Li and B diffusion of 57 ± 4 kJ/mol and 152 ± 15 kJ/mol with pre-exponential factors of 1.53 × 10
–7
m
2
/s and 3.80 × 10
–8
m
2
/s, respectively. Lithium isotopic fractionation during diffusion gave β values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li diffusivities and isotopic fractionation results differ somewhat from earlier published values, but overall confirm that Li diffusivity increases with water content. Our results on B diffusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confirm that B diffusivity is limited by viscous flow in silicate melts. Our results on Li and B diffusion present a new tool for understanding degassing-related processes, offering a potential geospeedometer to measure volcanic ascent rates.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-022-01937-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boron ; Degassing ; Diffusion ; Diffusion coefficients ; Diffusivity ; Earth and Environmental Science ; Earth Sciences ; Fractionation ; Geology ; Isotope fractionation ; Isotopes ; Lithium ; Melts ; Mineral Resources ; Mineralogy ; Moisture content ; Original Paper ; Petrology ; Pressure vessels ; Sciences of the Universe ; Silicates ; Solid solutions ; Vapor phases ; Viscous flow ; Volcanic activity ; Water content</subject><ispartof>Contributions to mineralogy and petrology, 2022-08, Vol.177 (8), Article 74</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a526t-c8e1067d67b102b50d5b030a51ce5fbb4c760e869a1650772e04da34948d0eb73</citedby><cites>FETCH-LOGICAL-a526t-c8e1067d67b102b50d5b030a51ce5fbb4c760e869a1650772e04da34948d0eb73</cites><orcidid>0000-0001-7702-9862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-022-01937-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-022-01937-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03777184$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Spallanzani, Roberta</creatorcontrib><creatorcontrib>Koga, Kenneth T.</creatorcontrib><creatorcontrib>Cichy, Sarah B.</creatorcontrib><creatorcontrib>Wiedenbeck, Michael</creatorcontrib><creatorcontrib>Schmidt, Burkhard C.</creatorcontrib><creatorcontrib>Oelze, Marcus</creatorcontrib><creatorcontrib>Wilke, Max</creatorcontrib><title>Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt% water), having different Li and B contents; these were studied in diffusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700–1250 °C for durations from 0 s to 24 h. From this we determined activation energies for Li and B diffusion of 57 ± 4 kJ/mol and 152 ± 15 kJ/mol with pre-exponential factors of 1.53 × 10
–7
m
2
/s and 3.80 × 10
–8
m
2
/s, respectively. Lithium isotopic fractionation during diffusion gave β values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li diffusivities and isotopic fractionation results differ somewhat from earlier published values, but overall confirm that Li diffusivity increases with water content. Our results on B diffusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confirm that B diffusivity is limited by viscous flow in silicate melts. Our results on Li and B diffusion present a new tool for understanding degassing-related processes, offering a potential geospeedometer to measure volcanic ascent rates.</description><subject>Boron</subject><subject>Degassing</subject><subject>Diffusion</subject><subject>Diffusion coefficients</subject><subject>Diffusivity</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fractionation</subject><subject>Geology</subject><subject>Isotope fractionation</subject><subject>Isotopes</subject><subject>Lithium</subject><subject>Melts</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Moisture content</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Pressure vessels</subject><subject>Sciences of the Universe</subject><subject>Silicates</subject><subject>Solid solutions</subject><subject>Vapor phases</subject><subject>Viscous flow</subject><subject>Volcanic activity</subject><subject>Water content</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kVFL5DAUhcPiwo66f2CfCvsmVG-SNmkeB1FHGPBFn0PapDMZ2mQ2SYX592asrAiDBBLuzXcu93AQ-oPhGgPwmwhQYSiBkBKwoLwkP9ACVzSXgvEztADI31wI8Qudx7iDXDeiXqDntU1bO42FcrpoffCu0Lbvp2hfbTq8d230ye9tV_RBdcl6p45XYV2xPeigktFF2B78YFNmRjOkeIl-9mqI5vfHe4Fe7u-eb1fl-unh8Xa5LlVNWCq7xmBgXDPeYiBtDbpugYKqcWfqvm2rjjMwDRMKsxo4JwYqrWglqkaDaTm9QFfz3K0a5D7YUYWD9MrK1XItrYuTBMo5x031ijP8d4b3wf-bTExy56fg8n6SMEEahilrPqmNGkye0fuUXY82dnLJMSaEUH6cVZ6gNsaZoAbvTG9z-wt_fYLPR5vRdicFZBZ0wccYTP_fHgZ5TFzOicucuHxPXJIsorMoZthtTPh0-I3qDT_pq4Q</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Spallanzani, Roberta</creator><creator>Koga, Kenneth T.</creator><creator>Cichy, Sarah B.</creator><creator>Wiedenbeck, Michael</creator><creator>Schmidt, Burkhard C.</creator><creator>Oelze, Marcus</creator><creator>Wilke, Max</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7702-9862</orcidid></search><sort><creationdate>20220801</creationdate><title>Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts</title><author>Spallanzani, Roberta ; Koga, Kenneth T. ; Cichy, Sarah B. ; Wiedenbeck, Michael ; Schmidt, Burkhard C. ; Oelze, Marcus ; Wilke, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526t-c8e1067d67b102b50d5b030a51ce5fbb4c760e869a1650772e04da34948d0eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boron</topic><topic>Degassing</topic><topic>Diffusion</topic><topic>Diffusion coefficients</topic><topic>Diffusivity</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fractionation</topic><topic>Geology</topic><topic>Isotope fractionation</topic><topic>Isotopes</topic><topic>Lithium</topic><topic>Melts</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Moisture content</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Pressure vessels</topic><topic>Sciences of the Universe</topic><topic>Silicates</topic><topic>Solid solutions</topic><topic>Vapor phases</topic><topic>Viscous flow</topic><topic>Volcanic activity</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spallanzani, Roberta</creatorcontrib><creatorcontrib>Koga, Kenneth T.</creatorcontrib><creatorcontrib>Cichy, Sarah B.</creatorcontrib><creatorcontrib>Wiedenbeck, Michael</creatorcontrib><creatorcontrib>Schmidt, Burkhard C.</creatorcontrib><creatorcontrib>Oelze, Marcus</creatorcontrib><creatorcontrib>Wilke, Max</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spallanzani, Roberta</au><au>Koga, Kenneth T.</au><au>Cichy, Sarah B.</au><au>Wiedenbeck, Michael</au><au>Schmidt, Burkhard C.</au><au>Oelze, Marcus</au><au>Wilke, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>177</volume><issue>8</issue><artnum>74</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt% water), having different Li and B contents; these were studied in diffusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700–1250 °C for durations from 0 s to 24 h. From this we determined activation energies for Li and B diffusion of 57 ± 4 kJ/mol and 152 ± 15 kJ/mol with pre-exponential factors of 1.53 × 10
–7
m
2
/s and 3.80 × 10
–8
m
2
/s, respectively. Lithium isotopic fractionation during diffusion gave β values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li diffusivities and isotopic fractionation results differ somewhat from earlier published values, but overall confirm that Li diffusivity increases with water content. Our results on B diffusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confirm that B diffusivity is limited by viscous flow in silicate melts. Our results on Li and B diffusion present a new tool for understanding degassing-related processes, offering a potential geospeedometer to measure volcanic ascent rates.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-022-01937-2</doi><orcidid>https://orcid.org/0000-0001-7702-9862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2022-08, Vol.177 (8), Article 74 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03777184v1 |
source | SpringerNature Journals |
subjects | Boron Degassing Diffusion Diffusion coefficients Diffusivity Earth and Environmental Science Earth Sciences Fractionation Geology Isotope fractionation Isotopes Lithium Melts Mineral Resources Mineralogy Moisture content Original Paper Petrology Pressure vessels Sciences of the Universe Silicates Solid solutions Vapor phases Viscous flow Volcanic activity Water content |
title | Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20and%20boron%20diffusivity%20and%20isotopic%20fractionation%20in%20hydrated%20rhyolitic%20melts&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Spallanzani,%20Roberta&rft.date=2022-08-01&rft.volume=177&rft.issue=8&rft.artnum=74&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-022-01937-2&rft_dat=%3Cgale_hal_p%3EA711222371%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692861368&rft_id=info:pmid/&rft_galeid=A711222371&rfr_iscdi=true |