A high-resolution global basemap of (101955) Bennu
In early 2019, NASA's OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission surveyed asteroid (101955) Bennu with a collection of instruments, including the OSIRIS-REx Camera Suite (OCAMS) PolyCam imager. Using PolyCam panchromatic images...
Gespeichert in:
Veröffentlicht in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 2021-03, Vol.357, p.113690, Article 113690 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113690 |
container_title | Icarus (New York, N.Y. 1962) |
container_volume | 357 |
creator | Bennett, C.A. DellaGiustina, D.N. Becker, K.J. Becker, T.L. Edmundson, K.L. Golish, D.R Bennett, R.J. Burke, K.N. Cue, C.N.U. Clark, B.E. Contreras, J. Deshapriya, J.D.P. d'Aubigny, C. Drouet Fitzgibbon, G. Jawin, E.R. Nolan, T.Q. Porter, N.A. Riehl, M.M. Roper, H.L. Rizk, B. Tang, Y. Zeszut, Z. Gaskell, R.W. Palmer, E.E. Weirich, J.R. Al Asad, M.M. Philpott, L. Daly, M.G. Barnouin, O.S. Enos, H.L. Lauretta, D.S. |
description | In early 2019, NASA's OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission surveyed asteroid (101955) Bennu with a collection of instruments, including the OSIRIS-REx Camera Suite (OCAMS) PolyCam imager. Using PolyCam panchromatic images, we constructed a globally controlled basemap of Bennu at an approximate ground sample distance of 5 cm with a mean spatial accuracy of ~30 cm. The basemap was photometrically normalized using a Minneart phase angle correction. New mapping methods were developed to combine images of Bennu's irregular shape and extremely rough surface into a nearly seamless mosaic. Here we present the global basemap of Bennu and discuss the image processing techniques used to construct a high-resolution mosaic of an irregular small body.
•We produced a global basemap of asteroid Bennu at a ground sample distance of 5 cm.•New methods were developed to deal with Bennu's rough surface and irregular shape.•Images were rectified to a 3D digital terrain model with a mean facet size of 80 cm.•Images were photometrically normalized to 30° phase angle using a Minneart model.•Overlaps were masked along natural feature boundaries for a nearly seamless result. |
doi_str_mv | 10.1016/j.icarus.2020.113690 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03713794v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103520300816</els_id><sourcerecordid>oai_HAL_insu_03713794v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-23bc017c4c7acf4e5e7f2f56ada69151d4dd3382772a8b9073549a713ef11ae53</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYccVUid2Y9s9yLUolYoeNHzMt1s2i1pUnabgv_elIhHTwPD-7zDPIzdIkwQsHjcToKj2KUJB96vUBQGztgIwUDOCynO2QgATY4g1CW7SmkLAGpqxIjxWbYJ600efWrr7hDaJlvX7YrqbEXJ72iftVV2118xSt1nz75pumt2UVGd_M3vHLOv15fP-SJffry9z2fLnKQuDjkXKweonXSaXCW98rrilSqopMKgwlKWpRBTrjWn6cqAFkoa0ih8hUheiTF7GHo3VNt9DDuK37alYBezpQ1N6iyIPq6NPGIflkPYxTal6Ks_AsGeJNmtHSTZkyQ7SOqxpwHz_SPH4KNNLvjG-TJE7w62bMP_BT_toW58</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A high-resolution global basemap of (101955) Bennu</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bennett, C.A. ; DellaGiustina, D.N. ; Becker, K.J. ; Becker, T.L. ; Edmundson, K.L. ; Golish, D.R ; Bennett, R.J. ; Burke, K.N. ; Cue, C.N.U. ; Clark, B.E. ; Contreras, J. ; Deshapriya, J.D.P. ; d'Aubigny, C. Drouet ; Fitzgibbon, G. ; Jawin, E.R. ; Nolan, T.Q. ; Porter, N.A. ; Riehl, M.M. ; Roper, H.L. ; Rizk, B. ; Tang, Y. ; Zeszut, Z. ; Gaskell, R.W. ; Palmer, E.E. ; Weirich, J.R. ; Al Asad, M.M. ; Philpott, L. ; Daly, M.G. ; Barnouin, O.S. ; Enos, H.L. ; Lauretta, D.S.</creator><creatorcontrib>Bennett, C.A. ; DellaGiustina, D.N. ; Becker, K.J. ; Becker, T.L. ; Edmundson, K.L. ; Golish, D.R ; Bennett, R.J. ; Burke, K.N. ; Cue, C.N.U. ; Clark, B.E. ; Contreras, J. ; Deshapriya, J.D.P. ; d'Aubigny, C. Drouet ; Fitzgibbon, G. ; Jawin, E.R. ; Nolan, T.Q. ; Porter, N.A. ; Riehl, M.M. ; Roper, H.L. ; Rizk, B. ; Tang, Y. ; Zeszut, Z. ; Gaskell, R.W. ; Palmer, E.E. ; Weirich, J.R. ; Al Asad, M.M. ; Philpott, L. ; Daly, M.G. ; Barnouin, O.S. ; Enos, H.L. ; Lauretta, D.S.</creatorcontrib><description>In early 2019, NASA's OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission surveyed asteroid (101955) Bennu with a collection of instruments, including the OSIRIS-REx Camera Suite (OCAMS) PolyCam imager. Using PolyCam panchromatic images, we constructed a globally controlled basemap of Bennu at an approximate ground sample distance of 5 cm with a mean spatial accuracy of ~30 cm. The basemap was photometrically normalized using a Minneart phase angle correction. New mapping methods were developed to combine images of Bennu's irregular shape and extremely rough surface into a nearly seamless mosaic. Here we present the global basemap of Bennu and discuss the image processing techniques used to construct a high-resolution mosaic of an irregular small body.
•We produced a global basemap of asteroid Bennu at a ground sample distance of 5 cm.•New methods were developed to deal with Bennu's rough surface and irregular shape.•Images were rectified to a 3D digital terrain model with a mean facet size of 80 cm.•Images were photometrically normalized to 30° phase angle using a Minneart model.•Overlaps were masked along natural feature boundaries for a nearly seamless result.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2020.113690</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Asteroid surfaces ; Asteroids ; Image processing ; Near-earth objects ; Sciences of the Universe</subject><ispartof>Icarus (New York, N.Y. 1962), 2021-03, Vol.357, p.113690, Article 113690</ispartof><rights>2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-23bc017c4c7acf4e5e7f2f56ada69151d4dd3382772a8b9073549a713ef11ae53</citedby><cites>FETCH-LOGICAL-a476t-23bc017c4c7acf4e5e7f2f56ada69151d4dd3382772a8b9073549a713ef11ae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icarus.2020.113690$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03713794$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennett, C.A.</creatorcontrib><creatorcontrib>DellaGiustina, D.N.</creatorcontrib><creatorcontrib>Becker, K.J.</creatorcontrib><creatorcontrib>Becker, T.L.</creatorcontrib><creatorcontrib>Edmundson, K.L.</creatorcontrib><creatorcontrib>Golish, D.R</creatorcontrib><creatorcontrib>Bennett, R.J.</creatorcontrib><creatorcontrib>Burke, K.N.</creatorcontrib><creatorcontrib>Cue, C.N.U.</creatorcontrib><creatorcontrib>Clark, B.E.</creatorcontrib><creatorcontrib>Contreras, J.</creatorcontrib><creatorcontrib>Deshapriya, J.D.P.</creatorcontrib><creatorcontrib>d'Aubigny, C. Drouet</creatorcontrib><creatorcontrib>Fitzgibbon, G.</creatorcontrib><creatorcontrib>Jawin, E.R.</creatorcontrib><creatorcontrib>Nolan, T.Q.</creatorcontrib><creatorcontrib>Porter, N.A.</creatorcontrib><creatorcontrib>Riehl, M.M.</creatorcontrib><creatorcontrib>Roper, H.L.</creatorcontrib><creatorcontrib>Rizk, B.</creatorcontrib><creatorcontrib>Tang, Y.</creatorcontrib><creatorcontrib>Zeszut, Z.</creatorcontrib><creatorcontrib>Gaskell, R.W.</creatorcontrib><creatorcontrib>Palmer, E.E.</creatorcontrib><creatorcontrib>Weirich, J.R.</creatorcontrib><creatorcontrib>Al Asad, M.M.</creatorcontrib><creatorcontrib>Philpott, L.</creatorcontrib><creatorcontrib>Daly, M.G.</creatorcontrib><creatorcontrib>Barnouin, O.S.</creatorcontrib><creatorcontrib>Enos, H.L.</creatorcontrib><creatorcontrib>Lauretta, D.S.</creatorcontrib><title>A high-resolution global basemap of (101955) Bennu</title><title>Icarus (New York, N.Y. 1962)</title><description>In early 2019, NASA's OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission surveyed asteroid (101955) Bennu with a collection of instruments, including the OSIRIS-REx Camera Suite (OCAMS) PolyCam imager. Using PolyCam panchromatic images, we constructed a globally controlled basemap of Bennu at an approximate ground sample distance of 5 cm with a mean spatial accuracy of ~30 cm. The basemap was photometrically normalized using a Minneart phase angle correction. New mapping methods were developed to combine images of Bennu's irregular shape and extremely rough surface into a nearly seamless mosaic. Here we present the global basemap of Bennu and discuss the image processing techniques used to construct a high-resolution mosaic of an irregular small body.
•We produced a global basemap of asteroid Bennu at a ground sample distance of 5 cm.•New methods were developed to deal with Bennu's rough surface and irregular shape.•Images were rectified to a 3D digital terrain model with a mean facet size of 80 cm.•Images were photometrically normalized to 30° phase angle using a Minneart model.•Overlaps were masked along natural feature boundaries for a nearly seamless result.</description><subject>Asteroid surfaces</subject><subject>Asteroids</subject><subject>Image processing</subject><subject>Near-earth objects</subject><subject>Sciences of the Universe</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYccVUid2Y9s9yLUolYoeNHzMt1s2i1pUnabgv_elIhHTwPD-7zDPIzdIkwQsHjcToKj2KUJB96vUBQGztgIwUDOCynO2QgATY4g1CW7SmkLAGpqxIjxWbYJ600efWrr7hDaJlvX7YrqbEXJ72iftVV2118xSt1nz75pumt2UVGd_M3vHLOv15fP-SJffry9z2fLnKQuDjkXKweonXSaXCW98rrilSqopMKgwlKWpRBTrjWn6cqAFkoa0ih8hUheiTF7GHo3VNt9DDuK37alYBezpQ1N6iyIPq6NPGIflkPYxTal6Ks_AsGeJNmtHSTZkyQ7SOqxpwHz_SPH4KNNLvjG-TJE7w62bMP_BT_toW58</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Bennett, C.A.</creator><creator>DellaGiustina, D.N.</creator><creator>Becker, K.J.</creator><creator>Becker, T.L.</creator><creator>Edmundson, K.L.</creator><creator>Golish, D.R</creator><creator>Bennett, R.J.</creator><creator>Burke, K.N.</creator><creator>Cue, C.N.U.</creator><creator>Clark, B.E.</creator><creator>Contreras, J.</creator><creator>Deshapriya, J.D.P.</creator><creator>d'Aubigny, C. Drouet</creator><creator>Fitzgibbon, G.</creator><creator>Jawin, E.R.</creator><creator>Nolan, T.Q.</creator><creator>Porter, N.A.</creator><creator>Riehl, M.M.</creator><creator>Roper, H.L.</creator><creator>Rizk, B.</creator><creator>Tang, Y.</creator><creator>Zeszut, Z.</creator><creator>Gaskell, R.W.</creator><creator>Palmer, E.E.</creator><creator>Weirich, J.R.</creator><creator>Al Asad, M.M.</creator><creator>Philpott, L.</creator><creator>Daly, M.G.</creator><creator>Barnouin, O.S.</creator><creator>Enos, H.L.</creator><creator>Lauretta, D.S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20210315</creationdate><title>A high-resolution global basemap of (101955) Bennu</title><author>Bennett, C.A. ; DellaGiustina, D.N. ; Becker, K.J. ; Becker, T.L. ; Edmundson, K.L. ; Golish, D.R ; Bennett, R.J. ; Burke, K.N. ; Cue, C.N.U. ; Clark, B.E. ; Contreras, J. ; Deshapriya, J.D.P. ; d'Aubigny, C. Drouet ; Fitzgibbon, G. ; Jawin, E.R. ; Nolan, T.Q. ; Porter, N.A. ; Riehl, M.M. ; Roper, H.L. ; Rizk, B. ; Tang, Y. ; Zeszut, Z. ; Gaskell, R.W. ; Palmer, E.E. ; Weirich, J.R. ; Al Asad, M.M. ; Philpott, L. ; Daly, M.G. ; Barnouin, O.S. ; Enos, H.L. ; Lauretta, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-23bc017c4c7acf4e5e7f2f56ada69151d4dd3382772a8b9073549a713ef11ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asteroid surfaces</topic><topic>Asteroids</topic><topic>Image processing</topic><topic>Near-earth objects</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennett, C.A.</creatorcontrib><creatorcontrib>DellaGiustina, D.N.</creatorcontrib><creatorcontrib>Becker, K.J.</creatorcontrib><creatorcontrib>Becker, T.L.</creatorcontrib><creatorcontrib>Edmundson, K.L.</creatorcontrib><creatorcontrib>Golish, D.R</creatorcontrib><creatorcontrib>Bennett, R.J.</creatorcontrib><creatorcontrib>Burke, K.N.</creatorcontrib><creatorcontrib>Cue, C.N.U.</creatorcontrib><creatorcontrib>Clark, B.E.</creatorcontrib><creatorcontrib>Contreras, J.</creatorcontrib><creatorcontrib>Deshapriya, J.D.P.</creatorcontrib><creatorcontrib>d'Aubigny, C. Drouet</creatorcontrib><creatorcontrib>Fitzgibbon, G.</creatorcontrib><creatorcontrib>Jawin, E.R.</creatorcontrib><creatorcontrib>Nolan, T.Q.</creatorcontrib><creatorcontrib>Porter, N.A.</creatorcontrib><creatorcontrib>Riehl, M.M.</creatorcontrib><creatorcontrib>Roper, H.L.</creatorcontrib><creatorcontrib>Rizk, B.</creatorcontrib><creatorcontrib>Tang, Y.</creatorcontrib><creatorcontrib>Zeszut, Z.</creatorcontrib><creatorcontrib>Gaskell, R.W.</creatorcontrib><creatorcontrib>Palmer, E.E.</creatorcontrib><creatorcontrib>Weirich, J.R.</creatorcontrib><creatorcontrib>Al Asad, M.M.</creatorcontrib><creatorcontrib>Philpott, L.</creatorcontrib><creatorcontrib>Daly, M.G.</creatorcontrib><creatorcontrib>Barnouin, O.S.</creatorcontrib><creatorcontrib>Enos, H.L.</creatorcontrib><creatorcontrib>Lauretta, D.S.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennett, C.A.</au><au>DellaGiustina, D.N.</au><au>Becker, K.J.</au><au>Becker, T.L.</au><au>Edmundson, K.L.</au><au>Golish, D.R</au><au>Bennett, R.J.</au><au>Burke, K.N.</au><au>Cue, C.N.U.</au><au>Clark, B.E.</au><au>Contreras, J.</au><au>Deshapriya, J.D.P.</au><au>d'Aubigny, C. Drouet</au><au>Fitzgibbon, G.</au><au>Jawin, E.R.</au><au>Nolan, T.Q.</au><au>Porter, N.A.</au><au>Riehl, M.M.</au><au>Roper, H.L.</au><au>Rizk, B.</au><au>Tang, Y.</au><au>Zeszut, Z.</au><au>Gaskell, R.W.</au><au>Palmer, E.E.</au><au>Weirich, J.R.</au><au>Al Asad, M.M.</au><au>Philpott, L.</au><au>Daly, M.G.</au><au>Barnouin, O.S.</au><au>Enos, H.L.</au><au>Lauretta, D.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-resolution global basemap of (101955) Bennu</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>357</volume><spage>113690</spage><pages>113690-</pages><artnum>113690</artnum><issn>0019-1035</issn><eissn>1090-2643</eissn><abstract>In early 2019, NASA's OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission surveyed asteroid (101955) Bennu with a collection of instruments, including the OSIRIS-REx Camera Suite (OCAMS) PolyCam imager. Using PolyCam panchromatic images, we constructed a globally controlled basemap of Bennu at an approximate ground sample distance of 5 cm with a mean spatial accuracy of ~30 cm. The basemap was photometrically normalized using a Minneart phase angle correction. New mapping methods were developed to combine images of Bennu's irregular shape and extremely rough surface into a nearly seamless mosaic. Here we present the global basemap of Bennu and discuss the image processing techniques used to construct a high-resolution mosaic of an irregular small body.
•We produced a global basemap of asteroid Bennu at a ground sample distance of 5 cm.•New methods were developed to deal with Bennu's rough surface and irregular shape.•Images were rectified to a 3D digital terrain model with a mean facet size of 80 cm.•Images were photometrically normalized to 30° phase angle using a Minneart model.•Overlaps were masked along natural feature boundaries for a nearly seamless result.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2020.113690</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-1035 |
ispartof | Icarus (New York, N.Y. 1962), 2021-03, Vol.357, p.113690, Article 113690 |
issn | 0019-1035 1090-2643 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03713794v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Asteroid surfaces Asteroids Image processing Near-earth objects Sciences of the Universe |
title | A high-resolution global basemap of (101955) Bennu |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-resolution%20global%20basemap%20of%20(101955)%20Bennu&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Bennett,%20C.A.&rft.date=2021-03-15&rft.volume=357&rft.spage=113690&rft.pages=113690-&rft.artnum=113690&rft.issn=0019-1035&rft.eissn=1090-2643&rft_id=info:doi/10.1016/j.icarus.2020.113690&rft_dat=%3Chal_cross%3Eoai_HAL_insu_03713794v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0019103520300816&rfr_iscdi=true |