The Impact of Wind Gusts on the Ocean Thermal Skin Layer

The thermodynamic and emissive properties of the ocean thermal skin layer are crucial contributors to air‐sea heat flux. In order to properly observe ocean surface temperature without disturbing any delicate fluid mechanical processes, thermal infrared imaging is often used. However, wind impacting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2019-10, Vol.46 (20), p.11301-11309
Hauptverfasser: Zappa, Christopher J., Laxague, Nathan J. M., Brumer, Sophia E., Anderson, Steven P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11309
container_issue 20
container_start_page 11301
container_title Geophysical research letters
container_volume 46
creator Zappa, Christopher J.
Laxague, Nathan J. M.
Brumer, Sophia E.
Anderson, Steven P.
description The thermodynamic and emissive properties of the ocean thermal skin layer are crucial contributors to air‐sea heat flux. In order to properly observe ocean surface temperature without disturbing any delicate fluid mechanical processes, thermal infrared imaging is often used. However, wind impacting the ocean surface complicates the extraction of meaningful information from thermal imagery; this is especially true for transient forcing phenomena such as wind gusts. Here, we describe wind gust‐water surface interaction through its impact on skin layer thermal and emissive properties. Two key physical processes are identified: (1) the growth of centimeter‐scale wind waves, which increases interfacial emissivity, and (2) microscale wave breaking and shear, which mix the cool skin layer with warmer millimeter‐depth water and increase the skin temperature. As more observations are made of air‐sea interaction under transient forcing, the full consideration of these processes becomes increasingly important. Plain Language Summary When a wind gust impacts an air‐water interface, two separate processes work to increase the temperature sensed by an infrared camera. The shortwave‐roughened surface becomes more emissive, and the skin layer (upper tens to hundreds of micrometers) becomes warmer as it is mixed by microscale wave breaking. The present paper identifies the effects of both processes in a field observational data set. This work is important to the quantification of air‐sea heat flux from thermal infrared measurements. Key Points Wind gusts produce transient ocean skin layer thermal fronts that propagate near the observed wind speed Wind gust fronts disrupt the ocean thermal skin layer due to microbreaking and increase emissivity due to capillary‐gravity wave growth Following wind gust front passage, capillary‐gravity wave relaxation reduced surface emissivity faster than the cool skin was restored
doi_str_mv 10.1029/2019GL083687
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03683187v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315576019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3792-4ebdcb539c9b710a172f1733ff9728800d47d0c737dafe26755c71afe03a685e3</originalsourceid><addsrcrecordid>eNp90FFLwzAQB_AgCs7pmx8g4JtYvSRN0zyOod2gIOjEx5ClCevs2pm0yr69kYr45NMd3I_j7o_QJYFbAlTeUSCyKCFnWS6O0ITINE1yAHGMJgAy9lRkp-gshC0AMGBkgvLVxuLlbq9NjzuHX-u2wsUQ-oC7Fvdx9misbnFUfqcb_PxWt7jUB-vP0YnTTbAXP3WKXh7uV_NFUj4Wy_msTAwTkiapXVdmzZk0ci0IaCKoI4Ix56SgeTyuSkUFRjBRaWdpJjg3gsQWmM5ybtkUXY97N7pRe1_vtD-oTtdqMStV3YZBQXyXkVx8kIivRrz33ftgQ6-23eDbeJ-ijHAusphQVDejMr4LwVv3u5eA-g5S_Q0ycjryz7qxh3-tKp5KLjml7AuDv3Be</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315576019</pqid></control><display><type>article</type><title>The Impact of Wind Gusts on the Ocean Thermal Skin Layer</title><source>EZB Free E-Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Zappa, Christopher J. ; Laxague, Nathan J. M. ; Brumer, Sophia E. ; Anderson, Steven P.</creator><creatorcontrib>Zappa, Christopher J. ; Laxague, Nathan J. M. ; Brumer, Sophia E. ; Anderson, Steven P.</creatorcontrib><description>The thermodynamic and emissive properties of the ocean thermal skin layer are crucial contributors to air‐sea heat flux. In order to properly observe ocean surface temperature without disturbing any delicate fluid mechanical processes, thermal infrared imaging is often used. However, wind impacting the ocean surface complicates the extraction of meaningful information from thermal imagery; this is especially true for transient forcing phenomena such as wind gusts. Here, we describe wind gust‐water surface interaction through its impact on skin layer thermal and emissive properties. Two key physical processes are identified: (1) the growth of centimeter‐scale wind waves, which increases interfacial emissivity, and (2) microscale wave breaking and shear, which mix the cool skin layer with warmer millimeter‐depth water and increase the skin temperature. As more observations are made of air‐sea interaction under transient forcing, the full consideration of these processes becomes increasingly important. Plain Language Summary When a wind gust impacts an air‐water interface, two separate processes work to increase the temperature sensed by an infrared camera. The shortwave‐roughened surface becomes more emissive, and the skin layer (upper tens to hundreds of micrometers) becomes warmer as it is mixed by microscale wave breaking. The present paper identifies the effects of both processes in a field observational data set. This work is important to the quantification of air‐sea heat flux from thermal infrared measurements. Key Points Wind gusts produce transient ocean skin layer thermal fronts that propagate near the observed wind speed Wind gust fronts disrupt the ocean thermal skin layer due to microbreaking and increase emissivity due to capillary‐gravity wave growth Following wind gust front passage, capillary‐gravity wave relaxation reduced surface emissivity faster than the cool skin was restored</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2019GL083687</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Air ; Air temperature ; Air-water interface ; air‐sea heat flux ; capillary‐gravity waves ; Earth Sciences ; Emissivity ; Gusts ; Heat flux ; Heat transfer ; Imagery ; Imaging techniques ; Infrared cameras ; Infrared imaging ; microbreaking ; Micrometers ; Ocean surface ; Ocean temperature ; Oceans ; Properties ; Sciences of the Universe ; Sea surface temperature ; Short wave radiation ; Skin temperature ; Surface temperature ; Temperature ; Thermal imaging ; Water depth ; Wave breaking ; Wind ; Wind waves</subject><ispartof>Geophysical research letters, 2019-10, Vol.46 (20), p.11301-11309</ispartof><rights>2019. The Authors.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3792-4ebdcb539c9b710a172f1733ff9728800d47d0c737dafe26755c71afe03a685e3</citedby><cites>FETCH-LOGICAL-c3792-4ebdcb539c9b710a172f1733ff9728800d47d0c737dafe26755c71afe03a685e3</cites><orcidid>0000-0001-9984-9538 ; 0000-0003-4583-3877 ; 0000-0003-0041-2913 ; 0000-0002-0373-9236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019GL083687$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019GL083687$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03683187$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zappa, Christopher J.</creatorcontrib><creatorcontrib>Laxague, Nathan J. M.</creatorcontrib><creatorcontrib>Brumer, Sophia E.</creatorcontrib><creatorcontrib>Anderson, Steven P.</creatorcontrib><title>The Impact of Wind Gusts on the Ocean Thermal Skin Layer</title><title>Geophysical research letters</title><description>The thermodynamic and emissive properties of the ocean thermal skin layer are crucial contributors to air‐sea heat flux. In order to properly observe ocean surface temperature without disturbing any delicate fluid mechanical processes, thermal infrared imaging is often used. However, wind impacting the ocean surface complicates the extraction of meaningful information from thermal imagery; this is especially true for transient forcing phenomena such as wind gusts. Here, we describe wind gust‐water surface interaction through its impact on skin layer thermal and emissive properties. Two key physical processes are identified: (1) the growth of centimeter‐scale wind waves, which increases interfacial emissivity, and (2) microscale wave breaking and shear, which mix the cool skin layer with warmer millimeter‐depth water and increase the skin temperature. As more observations are made of air‐sea interaction under transient forcing, the full consideration of these processes becomes increasingly important. Plain Language Summary When a wind gust impacts an air‐water interface, two separate processes work to increase the temperature sensed by an infrared camera. The shortwave‐roughened surface becomes more emissive, and the skin layer (upper tens to hundreds of micrometers) becomes warmer as it is mixed by microscale wave breaking. The present paper identifies the effects of both processes in a field observational data set. This work is important to the quantification of air‐sea heat flux from thermal infrared measurements. Key Points Wind gusts produce transient ocean skin layer thermal fronts that propagate near the observed wind speed Wind gust fronts disrupt the ocean thermal skin layer due to microbreaking and increase emissivity due to capillary‐gravity wave growth Following wind gust front passage, capillary‐gravity wave relaxation reduced surface emissivity faster than the cool skin was restored</description><subject>Air</subject><subject>Air temperature</subject><subject>Air-water interface</subject><subject>air‐sea heat flux</subject><subject>capillary‐gravity waves</subject><subject>Earth Sciences</subject><subject>Emissivity</subject><subject>Gusts</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Imagery</subject><subject>Imaging techniques</subject><subject>Infrared cameras</subject><subject>Infrared imaging</subject><subject>microbreaking</subject><subject>Micrometers</subject><subject>Ocean surface</subject><subject>Ocean temperature</subject><subject>Oceans</subject><subject>Properties</subject><subject>Sciences of the Universe</subject><subject>Sea surface temperature</subject><subject>Short wave radiation</subject><subject>Skin temperature</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Thermal imaging</subject><subject>Water depth</subject><subject>Wave breaking</subject><subject>Wind</subject><subject>Wind waves</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90FFLwzAQB_AgCs7pmx8g4JtYvSRN0zyOod2gIOjEx5ClCevs2pm0yr69kYr45NMd3I_j7o_QJYFbAlTeUSCyKCFnWS6O0ITINE1yAHGMJgAy9lRkp-gshC0AMGBkgvLVxuLlbq9NjzuHX-u2wsUQ-oC7Fvdx9misbnFUfqcb_PxWt7jUB-vP0YnTTbAXP3WKXh7uV_NFUj4Wy_msTAwTkiapXVdmzZk0ci0IaCKoI4Ix56SgeTyuSkUFRjBRaWdpJjg3gsQWmM5ybtkUXY97N7pRe1_vtD-oTtdqMStV3YZBQXyXkVx8kIivRrz33ftgQ6-23eDbeJ-ijHAusphQVDejMr4LwVv3u5eA-g5S_Q0ycjryz7qxh3-tKp5KLjml7AuDv3Be</recordid><startdate>20191028</startdate><enddate>20191028</enddate><creator>Zappa, Christopher J.</creator><creator>Laxague, Nathan J. M.</creator><creator>Brumer, Sophia E.</creator><creator>Anderson, Steven P.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9984-9538</orcidid><orcidid>https://orcid.org/0000-0003-4583-3877</orcidid><orcidid>https://orcid.org/0000-0003-0041-2913</orcidid><orcidid>https://orcid.org/0000-0002-0373-9236</orcidid></search><sort><creationdate>20191028</creationdate><title>The Impact of Wind Gusts on the Ocean Thermal Skin Layer</title><author>Zappa, Christopher J. ; Laxague, Nathan J. M. ; Brumer, Sophia E. ; Anderson, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3792-4ebdcb539c9b710a172f1733ff9728800d47d0c737dafe26755c71afe03a685e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air</topic><topic>Air temperature</topic><topic>Air-water interface</topic><topic>air‐sea heat flux</topic><topic>capillary‐gravity waves</topic><topic>Earth Sciences</topic><topic>Emissivity</topic><topic>Gusts</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Imagery</topic><topic>Imaging techniques</topic><topic>Infrared cameras</topic><topic>Infrared imaging</topic><topic>microbreaking</topic><topic>Micrometers</topic><topic>Ocean surface</topic><topic>Ocean temperature</topic><topic>Oceans</topic><topic>Properties</topic><topic>Sciences of the Universe</topic><topic>Sea surface temperature</topic><topic>Short wave radiation</topic><topic>Skin temperature</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Thermal imaging</topic><topic>Water depth</topic><topic>Wave breaking</topic><topic>Wind</topic><topic>Wind waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zappa, Christopher J.</creatorcontrib><creatorcontrib>Laxague, Nathan J. M.</creatorcontrib><creatorcontrib>Brumer, Sophia E.</creatorcontrib><creatorcontrib>Anderson, Steven P.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zappa, Christopher J.</au><au>Laxague, Nathan J. M.</au><au>Brumer, Sophia E.</au><au>Anderson, Steven P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Wind Gusts on the Ocean Thermal Skin Layer</atitle><jtitle>Geophysical research letters</jtitle><date>2019-10-28</date><risdate>2019</risdate><volume>46</volume><issue>20</issue><spage>11301</spage><epage>11309</epage><pages>11301-11309</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The thermodynamic and emissive properties of the ocean thermal skin layer are crucial contributors to air‐sea heat flux. In order to properly observe ocean surface temperature without disturbing any delicate fluid mechanical processes, thermal infrared imaging is often used. However, wind impacting the ocean surface complicates the extraction of meaningful information from thermal imagery; this is especially true for transient forcing phenomena such as wind gusts. Here, we describe wind gust‐water surface interaction through its impact on skin layer thermal and emissive properties. Two key physical processes are identified: (1) the growth of centimeter‐scale wind waves, which increases interfacial emissivity, and (2) microscale wave breaking and shear, which mix the cool skin layer with warmer millimeter‐depth water and increase the skin temperature. As more observations are made of air‐sea interaction under transient forcing, the full consideration of these processes becomes increasingly important. Plain Language Summary When a wind gust impacts an air‐water interface, two separate processes work to increase the temperature sensed by an infrared camera. The shortwave‐roughened surface becomes more emissive, and the skin layer (upper tens to hundreds of micrometers) becomes warmer as it is mixed by microscale wave breaking. The present paper identifies the effects of both processes in a field observational data set. This work is important to the quantification of air‐sea heat flux from thermal infrared measurements. Key Points Wind gusts produce transient ocean skin layer thermal fronts that propagate near the observed wind speed Wind gust fronts disrupt the ocean thermal skin layer due to microbreaking and increase emissivity due to capillary‐gravity wave growth Following wind gust front passage, capillary‐gravity wave relaxation reduced surface emissivity faster than the cool skin was restored</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019GL083687</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9984-9538</orcidid><orcidid>https://orcid.org/0000-0003-4583-3877</orcidid><orcidid>https://orcid.org/0000-0003-0041-2913</orcidid><orcidid>https://orcid.org/0000-0002-0373-9236</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2019-10, Vol.46 (20), p.11301-11309
issn 0094-8276
1944-8007
language eng
recordid cdi_hal_primary_oai_HAL_insu_03683187v1
source EZB Free E-Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley-Blackwell AGU Digital Archive
subjects Air
Air temperature
Air-water interface
air‐sea heat flux
capillary‐gravity waves
Earth Sciences
Emissivity
Gusts
Heat flux
Heat transfer
Imagery
Imaging techniques
Infrared cameras
Infrared imaging
microbreaking
Micrometers
Ocean surface
Ocean temperature
Oceans
Properties
Sciences of the Universe
Sea surface temperature
Short wave radiation
Skin temperature
Surface temperature
Temperature
Thermal imaging
Water depth
Wave breaking
Wind
Wind waves
title The Impact of Wind Gusts on the Ocean Thermal Skin Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Wind%20Gusts%20on%20the%20Ocean%20Thermal%20Skin%20Layer&rft.jtitle=Geophysical%20research%20letters&rft.au=Zappa,%20Christopher%20J.&rft.date=2019-10-28&rft.volume=46&rft.issue=20&rft.spage=11301&rft.epage=11309&rft.pages=11301-11309&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2019GL083687&rft_dat=%3Cproquest_hal_p%3E2315576019%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315576019&rft_id=info:pmid/&rfr_iscdi=true