Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite

Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2016-03, Vol.121 (3), p.2308-2320
Hauptverfasser: Kimura, T., Kraft, R. P., Elsner, R. F., Branduardi‐Raymont, G., Gladstone, G. R., Tao, C., Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Vogt, M. F., Masters, A., Hasegawa, H., Badman, S. V., Roediger, E., Ezoe, Y., Dunn, W. R., Yoshikawa, I., Fujimoto, M., Murray, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2320
container_issue 3
container_start_page 2308
container_title Journal of geophysical research. Space physics
container_volume 121
creator Kimura, T.
Kraft, R. P.
Elsner, R. F.
Branduardi‐Raymont, G.
Gladstone, G. R.
Tao, C.
Yoshioka, K.
Murakami, G.
Yamazaki, A.
Tsuchiya, F.
Vogt, M. F.
Masters, A.
Hasegawa, H.
Badman, S. V.
Roediger, E.
Ezoe, Y.
Dunn, W. R.
Yoshikawa, I.
Fujimoto, M.
Murray, S. S.
description Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanism for the high‐energy acceleration. The magnetospheric location of the source field line where the X‐ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long‐term monitoring of the X‐rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long‐term multiwavelength monitoring of Jupiter's X‐ray and EUV auroral emissions was made by the Chandra X‐ray Observatory, XMM‐Newton, and Hisaki satellite. We find that the X‐ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X‐ray auroral region was found to be open to the interplanetary space. The other half of the X‐ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin‐Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high‐energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators. Key Points Count rate of Jupiter's X‐ray aurora is positively correlated with the solar wind velocity Source field line of Jupiter's X‐ray aurora magnetically map to the prenoon to postdusk sector The magnetopause reconnection and/or KH instability could drive Jupiter's X‐ray aurora
doi_str_mv 10.1002/2015JA021893
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03675426v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808125582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5562-463ddb3631882a9e66bc934264b9d0bb19e5c4c4e21b473e431921d1b0698f133</originalsourceid><addsrcrecordid>eNqF0d1KIzEUAOBBFBT1bh8g4IUi7ZqTv0kuS6nWUleQdRFvQmYmxeh0UpMZpXc-gs_okxi3KosXbiAkJN85nORk2Q_APwFjckQw8MkAE5CKrmVbBITqK4bJ-seeSryZ7cZ4i9OQ6Qj4VnY96RautWE_oquXp-dglsg0FRpd_kGmCz6YiOa-ca0PtkLFEg1v0nUwPXR1dpb8L_vY-qb3N2bsorlzKJrW1nXKuZNtzEwd7e77up1dHo9-D8f96fnJ6XAw7ZecC9JnglZVQQUFKYlRVoiiVJQRwQpV4aIAZXnJSmYJFCynllFQBCoosFByBpRuZ4ervDem1ovg5iYstTdOjwdT7ZrYaUxFzlPGB0j4YIUXwd93NrZ67mKZCjaN9V3UINPXEM4l-T_NZa7SzFmie1_ore9Ck179pihWoLhIqrdSZfAxBjv7rBawfuuh_reHidMVf3S1XX5r9eTkYsAJo4S-Apssmiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783091956</pqid></control><display><type>article</type><title>Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Kimura, T. ; Kraft, R. P. ; Elsner, R. F. ; Branduardi‐Raymont, G. ; Gladstone, G. R. ; Tao, C. ; Yoshioka, K. ; Murakami, G. ; Yamazaki, A. ; Tsuchiya, F. ; Vogt, M. F. ; Masters, A. ; Hasegawa, H. ; Badman, S. V. ; Roediger, E. ; Ezoe, Y. ; Dunn, W. R. ; Yoshikawa, I. ; Fujimoto, M. ; Murray, S. S.</creator><creatorcontrib>Kimura, T. ; Kraft, R. P. ; Elsner, R. F. ; Branduardi‐Raymont, G. ; Gladstone, G. R. ; Tao, C. ; Yoshioka, K. ; Murakami, G. ; Yamazaki, A. ; Tsuchiya, F. ; Vogt, M. F. ; Masters, A. ; Hasegawa, H. ; Badman, S. V. ; Roediger, E. ; Ezoe, Y. ; Dunn, W. R. ; Yoshikawa, I. ; Fujimoto, M. ; Murray, S. S.</creatorcontrib><description>Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanism for the high‐energy acceleration. The magnetospheric location of the source field line where the X‐ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long‐term monitoring of the X‐rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long‐term multiwavelength monitoring of Jupiter's X‐ray and EUV auroral emissions was made by the Chandra X‐ray Observatory, XMM‐Newton, and Hisaki satellite. We find that the X‐ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X‐ray auroral region was found to be open to the interplanetary space. The other half of the X‐ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin‐Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high‐energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators. Key Points Count rate of Jupiter's X‐ray aurora is positively correlated with the solar wind velocity Source field line of Jupiter's X‐ray aurora magnetically map to the prenoon to postdusk sector The magnetopause reconnection and/or KH instability could drive Jupiter's X‐ray aurora</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2015JA021893</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Acceleration ; Auroras ; Emissions ; Instability ; Ionosphere ; Jupiter ; Jupiter (planet) ; Jupiter atmosphere ; Magnetic fields ; magnetosphere ; Saturn ; Sciences of the Universe ; Wind speed ; X-ray sources ; X-rays ; XMM (spacecraft) ; X‐ray</subject><ispartof>Journal of geophysical research. Space physics, 2016-03, Vol.121 (3), p.2308-2320</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5562-463ddb3631882a9e66bc934264b9d0bb19e5c4c4e21b473e431921d1b0698f133</citedby><cites>FETCH-LOGICAL-c5562-463ddb3631882a9e66bc934264b9d0bb19e5c4c4e21b473e431921d1b0698f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JA021893$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JA021893$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27903,27904,45553,45554,46388,46812</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03675426$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimura, T.</creatorcontrib><creatorcontrib>Kraft, R. P.</creatorcontrib><creatorcontrib>Elsner, R. F.</creatorcontrib><creatorcontrib>Branduardi‐Raymont, G.</creatorcontrib><creatorcontrib>Gladstone, G. R.</creatorcontrib><creatorcontrib>Tao, C.</creatorcontrib><creatorcontrib>Yoshioka, K.</creatorcontrib><creatorcontrib>Murakami, G.</creatorcontrib><creatorcontrib>Yamazaki, A.</creatorcontrib><creatorcontrib>Tsuchiya, F.</creatorcontrib><creatorcontrib>Vogt, M. F.</creatorcontrib><creatorcontrib>Masters, A.</creatorcontrib><creatorcontrib>Hasegawa, H.</creatorcontrib><creatorcontrib>Badman, S. V.</creatorcontrib><creatorcontrib>Roediger, E.</creatorcontrib><creatorcontrib>Ezoe, Y.</creatorcontrib><creatorcontrib>Dunn, W. R.</creatorcontrib><creatorcontrib>Yoshikawa, I.</creatorcontrib><creatorcontrib>Fujimoto, M.</creatorcontrib><creatorcontrib>Murray, S. S.</creatorcontrib><title>Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite</title><title>Journal of geophysical research. Space physics</title><description>Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanism for the high‐energy acceleration. The magnetospheric location of the source field line where the X‐ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long‐term monitoring of the X‐rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long‐term multiwavelength monitoring of Jupiter's X‐ray and EUV auroral emissions was made by the Chandra X‐ray Observatory, XMM‐Newton, and Hisaki satellite. We find that the X‐ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X‐ray auroral region was found to be open to the interplanetary space. The other half of the X‐ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin‐Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high‐energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators. Key Points Count rate of Jupiter's X‐ray aurora is positively correlated with the solar wind velocity Source field line of Jupiter's X‐ray aurora magnetically map to the prenoon to postdusk sector The magnetopause reconnection and/or KH instability could drive Jupiter's X‐ray aurora</description><subject>Acceleration</subject><subject>Auroras</subject><subject>Emissions</subject><subject>Instability</subject><subject>Ionosphere</subject><subject>Jupiter</subject><subject>Jupiter (planet)</subject><subject>Jupiter atmosphere</subject><subject>Magnetic fields</subject><subject>magnetosphere</subject><subject>Saturn</subject><subject>Sciences of the Universe</subject><subject>Wind speed</subject><subject>X-ray sources</subject><subject>X-rays</subject><subject>XMM (spacecraft)</subject><subject>X‐ray</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0d1KIzEUAOBBFBT1bh8g4IUi7ZqTv0kuS6nWUleQdRFvQmYmxeh0UpMZpXc-gs_okxi3KosXbiAkJN85nORk2Q_APwFjckQw8MkAE5CKrmVbBITqK4bJ-seeSryZ7cZ4i9OQ6Qj4VnY96RautWE_oquXp-dglsg0FRpd_kGmCz6YiOa-ca0PtkLFEg1v0nUwPXR1dpb8L_vY-qb3N2bsorlzKJrW1nXKuZNtzEwd7e77up1dHo9-D8f96fnJ6XAw7ZecC9JnglZVQQUFKYlRVoiiVJQRwQpV4aIAZXnJSmYJFCynllFQBCoosFByBpRuZ4ervDem1ovg5iYstTdOjwdT7ZrYaUxFzlPGB0j4YIUXwd93NrZ67mKZCjaN9V3UINPXEM4l-T_NZa7SzFmie1_ore9Ck179pihWoLhIqrdSZfAxBjv7rBawfuuh_reHidMVf3S1XX5r9eTkYsAJo4S-Apssmiw</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Kimura, T.</creator><creator>Kraft, R. P.</creator><creator>Elsner, R. F.</creator><creator>Branduardi‐Raymont, G.</creator><creator>Gladstone, G. R.</creator><creator>Tao, C.</creator><creator>Yoshioka, K.</creator><creator>Murakami, G.</creator><creator>Yamazaki, A.</creator><creator>Tsuchiya, F.</creator><creator>Vogt, M. F.</creator><creator>Masters, A.</creator><creator>Hasegawa, H.</creator><creator>Badman, S. V.</creator><creator>Roediger, E.</creator><creator>Ezoe, Y.</creator><creator>Dunn, W. R.</creator><creator>Yoshikawa, I.</creator><creator>Fujimoto, M.</creator><creator>Murray, S. S.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201603</creationdate><title>Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite</title><author>Kimura, T. ; Kraft, R. P. ; Elsner, R. F. ; Branduardi‐Raymont, G. ; Gladstone, G. R. ; Tao, C. ; Yoshioka, K. ; Murakami, G. ; Yamazaki, A. ; Tsuchiya, F. ; Vogt, M. F. ; Masters, A. ; Hasegawa, H. ; Badman, S. V. ; Roediger, E. ; Ezoe, Y. ; Dunn, W. R. ; Yoshikawa, I. ; Fujimoto, M. ; Murray, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5562-463ddb3631882a9e66bc934264b9d0bb19e5c4c4e21b473e431921d1b0698f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acceleration</topic><topic>Auroras</topic><topic>Emissions</topic><topic>Instability</topic><topic>Ionosphere</topic><topic>Jupiter</topic><topic>Jupiter (planet)</topic><topic>Jupiter atmosphere</topic><topic>Magnetic fields</topic><topic>magnetosphere</topic><topic>Saturn</topic><topic>Sciences of the Universe</topic><topic>Wind speed</topic><topic>X-ray sources</topic><topic>X-rays</topic><topic>XMM (spacecraft)</topic><topic>X‐ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimura, T.</creatorcontrib><creatorcontrib>Kraft, R. P.</creatorcontrib><creatorcontrib>Elsner, R. F.</creatorcontrib><creatorcontrib>Branduardi‐Raymont, G.</creatorcontrib><creatorcontrib>Gladstone, G. R.</creatorcontrib><creatorcontrib>Tao, C.</creatorcontrib><creatorcontrib>Yoshioka, K.</creatorcontrib><creatorcontrib>Murakami, G.</creatorcontrib><creatorcontrib>Yamazaki, A.</creatorcontrib><creatorcontrib>Tsuchiya, F.</creatorcontrib><creatorcontrib>Vogt, M. F.</creatorcontrib><creatorcontrib>Masters, A.</creatorcontrib><creatorcontrib>Hasegawa, H.</creatorcontrib><creatorcontrib>Badman, S. V.</creatorcontrib><creatorcontrib>Roediger, E.</creatorcontrib><creatorcontrib>Ezoe, Y.</creatorcontrib><creatorcontrib>Dunn, W. R.</creatorcontrib><creatorcontrib>Yoshikawa, I.</creatorcontrib><creatorcontrib>Fujimoto, M.</creatorcontrib><creatorcontrib>Murray, S. S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimura, T.</au><au>Kraft, R. P.</au><au>Elsner, R. F.</au><au>Branduardi‐Raymont, G.</au><au>Gladstone, G. R.</au><au>Tao, C.</au><au>Yoshioka, K.</au><au>Murakami, G.</au><au>Yamazaki, A.</au><au>Tsuchiya, F.</au><au>Vogt, M. F.</au><au>Masters, A.</au><au>Hasegawa, H.</au><au>Badman, S. V.</au><au>Roediger, E.</au><au>Ezoe, Y.</au><au>Dunn, W. R.</au><au>Yoshikawa, I.</au><au>Fujimoto, M.</au><au>Murray, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2016-03</date><risdate>2016</risdate><volume>121</volume><issue>3</issue><spage>2308</spage><epage>2320</epage><pages>2308-2320</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanism for the high‐energy acceleration. The magnetospheric location of the source field line where the X‐ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long‐term monitoring of the X‐rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long‐term multiwavelength monitoring of Jupiter's X‐ray and EUV auroral emissions was made by the Chandra X‐ray Observatory, XMM‐Newton, and Hisaki satellite. We find that the X‐ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X‐ray auroral region was found to be open to the interplanetary space. The other half of the X‐ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin‐Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high‐energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators. Key Points Count rate of Jupiter's X‐ray aurora is positively correlated with the solar wind velocity Source field line of Jupiter's X‐ray aurora magnetically map to the prenoon to postdusk sector The magnetopause reconnection and/or KH instability could drive Jupiter's X‐ray aurora</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JA021893</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2016-03, Vol.121 (3), p.2308-2320
issn 2169-9380
2169-9402
language eng
recordid cdi_hal_primary_oai_HAL_insu_03675426v1
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Acceleration
Auroras
Emissions
Instability
Ionosphere
Jupiter
Jupiter (planet)
Jupiter atmosphere
Magnetic fields
magnetosphere
Saturn
Sciences of the Universe
Wind speed
X-ray sources
X-rays
XMM (spacecraft)
X‐ray
title Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jupiter's%20X%E2%80%90ray%20and%20EUV%20auroras%20monitored%20by%20Chandra,%20XMM%E2%80%90Newton,%20and%20Hisaki%20satellite&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Kimura,%20T.&rft.date=2016-03&rft.volume=121&rft.issue=3&rft.spage=2308&rft.epage=2320&rft.pages=2308-2320&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2015JA021893&rft_dat=%3Cproquest_hal_p%3E1808125582%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783091956&rft_id=info:pmid/&rfr_iscdi=true