Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite
Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanis...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2016-03, Vol.121 (3), p.2308-2320 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2320 |
---|---|
container_issue | 3 |
container_start_page | 2308 |
container_title | Journal of geophysical research. Space physics |
container_volume | 121 |
creator | Kimura, T. Kraft, R. P. Elsner, R. F. Branduardi‐Raymont, G. Gladstone, G. R. Tao, C. Yoshioka, K. Murakami, G. Yamazaki, A. Tsuchiya, F. Vogt, M. F. Masters, A. Hasegawa, H. Badman, S. V. Roediger, E. Ezoe, Y. Dunn, W. R. Yoshikawa, I. Fujimoto, M. Murray, S. S. |
description | Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanism for the high‐energy acceleration. The magnetospheric location of the source field line where the X‐ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long‐term monitoring of the X‐rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long‐term multiwavelength monitoring of Jupiter's X‐ray and EUV auroral emissions was made by the Chandra X‐ray Observatory, XMM‐Newton, and Hisaki satellite. We find that the X‐ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X‐ray auroral region was found to be open to the interplanetary space. The other half of the X‐ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin‐Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high‐energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators.
Key Points
Count rate of Jupiter's X‐ray aurora is positively correlated with the solar wind velocity
Source field line of Jupiter's X‐ray aurora magnetically map to the prenoon to postdusk sector
The magnetopause reconnection and/or KH instability could drive Jupiter's X‐ray aurora |
doi_str_mv | 10.1002/2015JA021893 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03675426v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808125582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5562-463ddb3631882a9e66bc934264b9d0bb19e5c4c4e21b473e431921d1b0698f133</originalsourceid><addsrcrecordid>eNqF0d1KIzEUAOBBFBT1bh8g4IUi7ZqTv0kuS6nWUleQdRFvQmYmxeh0UpMZpXc-gs_okxi3KosXbiAkJN85nORk2Q_APwFjckQw8MkAE5CKrmVbBITqK4bJ-seeSryZ7cZ4i9OQ6Qj4VnY96RautWE_oquXp-dglsg0FRpd_kGmCz6YiOa-ca0PtkLFEg1v0nUwPXR1dpb8L_vY-qb3N2bsorlzKJrW1nXKuZNtzEwd7e77up1dHo9-D8f96fnJ6XAw7ZecC9JnglZVQQUFKYlRVoiiVJQRwQpV4aIAZXnJSmYJFCynllFQBCoosFByBpRuZ4ervDem1ovg5iYstTdOjwdT7ZrYaUxFzlPGB0j4YIUXwd93NrZ67mKZCjaN9V3UINPXEM4l-T_NZa7SzFmie1_ore9Ck179pihWoLhIqrdSZfAxBjv7rBawfuuh_reHidMVf3S1XX5r9eTkYsAJo4S-Apssmiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783091956</pqid></control><display><type>article</type><title>Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Kimura, T. ; Kraft, R. P. ; Elsner, R. F. ; Branduardi‐Raymont, G. ; Gladstone, G. R. ; Tao, C. ; Yoshioka, K. ; Murakami, G. ; Yamazaki, A. ; Tsuchiya, F. ; Vogt, M. F. ; Masters, A. ; Hasegawa, H. ; Badman, S. V. ; Roediger, E. ; Ezoe, Y. ; Dunn, W. R. ; Yoshikawa, I. ; Fujimoto, M. ; Murray, S. S.</creator><creatorcontrib>Kimura, T. ; Kraft, R. P. ; Elsner, R. F. ; Branduardi‐Raymont, G. ; Gladstone, G. R. ; Tao, C. ; Yoshioka, K. ; Murakami, G. ; Yamazaki, A. ; Tsuchiya, F. ; Vogt, M. F. ; Masters, A. ; Hasegawa, H. ; Badman, S. V. ; Roediger, E. ; Ezoe, Y. ; Dunn, W. R. ; Yoshikawa, I. ; Fujimoto, M. ; Murray, S. S.</creatorcontrib><description>Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanism for the high‐energy acceleration. The magnetospheric location of the source field line where the X‐ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long‐term monitoring of the X‐rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long‐term multiwavelength monitoring of Jupiter's X‐ray and EUV auroral emissions was made by the Chandra X‐ray Observatory, XMM‐Newton, and Hisaki satellite. We find that the X‐ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X‐ray auroral region was found to be open to the interplanetary space. The other half of the X‐ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin‐Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high‐energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators.
Key Points
Count rate of Jupiter's X‐ray aurora is positively correlated with the solar wind velocity
Source field line of Jupiter's X‐ray aurora magnetically map to the prenoon to postdusk sector
The magnetopause reconnection and/or KH instability could drive Jupiter's X‐ray aurora</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2015JA021893</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Acceleration ; Auroras ; Emissions ; Instability ; Ionosphere ; Jupiter ; Jupiter (planet) ; Jupiter atmosphere ; Magnetic fields ; magnetosphere ; Saturn ; Sciences of the Universe ; Wind speed ; X-ray sources ; X-rays ; XMM (spacecraft) ; X‐ray</subject><ispartof>Journal of geophysical research. Space physics, 2016-03, Vol.121 (3), p.2308-2320</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5562-463ddb3631882a9e66bc934264b9d0bb19e5c4c4e21b473e431921d1b0698f133</citedby><cites>FETCH-LOGICAL-c5562-463ddb3631882a9e66bc934264b9d0bb19e5c4c4e21b473e431921d1b0698f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JA021893$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JA021893$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27903,27904,45553,45554,46388,46812</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03675426$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimura, T.</creatorcontrib><creatorcontrib>Kraft, R. P.</creatorcontrib><creatorcontrib>Elsner, R. F.</creatorcontrib><creatorcontrib>Branduardi‐Raymont, G.</creatorcontrib><creatorcontrib>Gladstone, G. R.</creatorcontrib><creatorcontrib>Tao, C.</creatorcontrib><creatorcontrib>Yoshioka, K.</creatorcontrib><creatorcontrib>Murakami, G.</creatorcontrib><creatorcontrib>Yamazaki, A.</creatorcontrib><creatorcontrib>Tsuchiya, F.</creatorcontrib><creatorcontrib>Vogt, M. F.</creatorcontrib><creatorcontrib>Masters, A.</creatorcontrib><creatorcontrib>Hasegawa, H.</creatorcontrib><creatorcontrib>Badman, S. V.</creatorcontrib><creatorcontrib>Roediger, E.</creatorcontrib><creatorcontrib>Ezoe, Y.</creatorcontrib><creatorcontrib>Dunn, W. R.</creatorcontrib><creatorcontrib>Yoshikawa, I.</creatorcontrib><creatorcontrib>Fujimoto, M.</creatorcontrib><creatorcontrib>Murray, S. S.</creatorcontrib><title>Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite</title><title>Journal of geophysical research. Space physics</title><description>Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanism for the high‐energy acceleration. The magnetospheric location of the source field line where the X‐ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long‐term monitoring of the X‐rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long‐term multiwavelength monitoring of Jupiter's X‐ray and EUV auroral emissions was made by the Chandra X‐ray Observatory, XMM‐Newton, and Hisaki satellite. We find that the X‐ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X‐ray auroral region was found to be open to the interplanetary space. The other half of the X‐ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin‐Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high‐energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators.
Key Points
Count rate of Jupiter's X‐ray aurora is positively correlated with the solar wind velocity
Source field line of Jupiter's X‐ray aurora magnetically map to the prenoon to postdusk sector
The magnetopause reconnection and/or KH instability could drive Jupiter's X‐ray aurora</description><subject>Acceleration</subject><subject>Auroras</subject><subject>Emissions</subject><subject>Instability</subject><subject>Ionosphere</subject><subject>Jupiter</subject><subject>Jupiter (planet)</subject><subject>Jupiter atmosphere</subject><subject>Magnetic fields</subject><subject>magnetosphere</subject><subject>Saturn</subject><subject>Sciences of the Universe</subject><subject>Wind speed</subject><subject>X-ray sources</subject><subject>X-rays</subject><subject>XMM (spacecraft)</subject><subject>X‐ray</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0d1KIzEUAOBBFBT1bh8g4IUi7ZqTv0kuS6nWUleQdRFvQmYmxeh0UpMZpXc-gs_okxi3KosXbiAkJN85nORk2Q_APwFjckQw8MkAE5CKrmVbBITqK4bJ-seeSryZ7cZ4i9OQ6Qj4VnY96RautWE_oquXp-dglsg0FRpd_kGmCz6YiOa-ca0PtkLFEg1v0nUwPXR1dpb8L_vY-qb3N2bsorlzKJrW1nXKuZNtzEwd7e77up1dHo9-D8f96fnJ6XAw7ZecC9JnglZVQQUFKYlRVoiiVJQRwQpV4aIAZXnJSmYJFCynllFQBCoosFByBpRuZ4ervDem1ovg5iYstTdOjwdT7ZrYaUxFzlPGB0j4YIUXwd93NrZ67mKZCjaN9V3UINPXEM4l-T_NZa7SzFmie1_ore9Ck179pihWoLhIqrdSZfAxBjv7rBawfuuh_reHidMVf3S1XX5r9eTkYsAJo4S-Apssmiw</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Kimura, T.</creator><creator>Kraft, R. P.</creator><creator>Elsner, R. F.</creator><creator>Branduardi‐Raymont, G.</creator><creator>Gladstone, G. R.</creator><creator>Tao, C.</creator><creator>Yoshioka, K.</creator><creator>Murakami, G.</creator><creator>Yamazaki, A.</creator><creator>Tsuchiya, F.</creator><creator>Vogt, M. F.</creator><creator>Masters, A.</creator><creator>Hasegawa, H.</creator><creator>Badman, S. V.</creator><creator>Roediger, E.</creator><creator>Ezoe, Y.</creator><creator>Dunn, W. R.</creator><creator>Yoshikawa, I.</creator><creator>Fujimoto, M.</creator><creator>Murray, S. S.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201603</creationdate><title>Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite</title><author>Kimura, T. ; Kraft, R. P. ; Elsner, R. F. ; Branduardi‐Raymont, G. ; Gladstone, G. R. ; Tao, C. ; Yoshioka, K. ; Murakami, G. ; Yamazaki, A. ; Tsuchiya, F. ; Vogt, M. F. ; Masters, A. ; Hasegawa, H. ; Badman, S. V. ; Roediger, E. ; Ezoe, Y. ; Dunn, W. R. ; Yoshikawa, I. ; Fujimoto, M. ; Murray, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5562-463ddb3631882a9e66bc934264b9d0bb19e5c4c4e21b473e431921d1b0698f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acceleration</topic><topic>Auroras</topic><topic>Emissions</topic><topic>Instability</topic><topic>Ionosphere</topic><topic>Jupiter</topic><topic>Jupiter (planet)</topic><topic>Jupiter atmosphere</topic><topic>Magnetic fields</topic><topic>magnetosphere</topic><topic>Saturn</topic><topic>Sciences of the Universe</topic><topic>Wind speed</topic><topic>X-ray sources</topic><topic>X-rays</topic><topic>XMM (spacecraft)</topic><topic>X‐ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimura, T.</creatorcontrib><creatorcontrib>Kraft, R. P.</creatorcontrib><creatorcontrib>Elsner, R. F.</creatorcontrib><creatorcontrib>Branduardi‐Raymont, G.</creatorcontrib><creatorcontrib>Gladstone, G. R.</creatorcontrib><creatorcontrib>Tao, C.</creatorcontrib><creatorcontrib>Yoshioka, K.</creatorcontrib><creatorcontrib>Murakami, G.</creatorcontrib><creatorcontrib>Yamazaki, A.</creatorcontrib><creatorcontrib>Tsuchiya, F.</creatorcontrib><creatorcontrib>Vogt, M. F.</creatorcontrib><creatorcontrib>Masters, A.</creatorcontrib><creatorcontrib>Hasegawa, H.</creatorcontrib><creatorcontrib>Badman, S. V.</creatorcontrib><creatorcontrib>Roediger, E.</creatorcontrib><creatorcontrib>Ezoe, Y.</creatorcontrib><creatorcontrib>Dunn, W. R.</creatorcontrib><creatorcontrib>Yoshikawa, I.</creatorcontrib><creatorcontrib>Fujimoto, M.</creatorcontrib><creatorcontrib>Murray, S. S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimura, T.</au><au>Kraft, R. P.</au><au>Elsner, R. F.</au><au>Branduardi‐Raymont, G.</au><au>Gladstone, G. R.</au><au>Tao, C.</au><au>Yoshioka, K.</au><au>Murakami, G.</au><au>Yamazaki, A.</au><au>Tsuchiya, F.</au><au>Vogt, M. F.</au><au>Masters, A.</au><au>Hasegawa, H.</au><au>Badman, S. V.</au><au>Roediger, E.</au><au>Ezoe, Y.</au><au>Dunn, W. R.</au><au>Yoshikawa, I.</au><au>Fujimoto, M.</au><au>Murray, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2016-03</date><risdate>2016</risdate><volume>121</volume><issue>3</issue><spage>2308</spage><epage>2320</epage><pages>2308-2320</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Jupiter's X‐ray auroral emission in the polar cap region results from particles which have undergone strong field‐aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X‐ray emission are essential to uncover the driving mechanism for the high‐energy acceleration. The magnetospheric location of the source field line where the X‐ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long‐term monitoring of the X‐rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long‐term multiwavelength monitoring of Jupiter's X‐ray and EUV auroral emissions was made by the Chandra X‐ray Observatory, XMM‐Newton, and Hisaki satellite. We find that the X‐ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X‐ray auroral region was found to be open to the interplanetary space. The other half of the X‐ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin‐Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high‐energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators.
Key Points
Count rate of Jupiter's X‐ray aurora is positively correlated with the solar wind velocity
Source field line of Jupiter's X‐ray aurora magnetically map to the prenoon to postdusk sector
The magnetopause reconnection and/or KH instability could drive Jupiter's X‐ray aurora</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JA021893</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2016-03, Vol.121 (3), p.2308-2320 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03675426v1 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content |
subjects | Acceleration Auroras Emissions Instability Ionosphere Jupiter Jupiter (planet) Jupiter atmosphere Magnetic fields magnetosphere Saturn Sciences of the Universe Wind speed X-ray sources X-rays XMM (spacecraft) X‐ray |
title | Jupiter's X‐ray and EUV auroras monitored by Chandra, XMM‐Newton, and Hisaki satellite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jupiter's%20X%E2%80%90ray%20and%20EUV%20auroras%20monitored%20by%20Chandra,%20XMM%E2%80%90Newton,%20and%20Hisaki%20satellite&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Kimura,%20T.&rft.date=2016-03&rft.volume=121&rft.issue=3&rft.spage=2308&rft.epage=2320&rft.pages=2308-2320&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2015JA021893&rft_dat=%3Cproquest_hal_p%3E1808125582%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783091956&rft_id=info:pmid/&rfr_iscdi=true |