Can the Surface Quasi‐Geostrophic (SQG) Theory Explain Upper Ocean Dynamics in the South Atlantic?

Satellite altimeters provide quasi‐global measurements of sea surface height, and from those the vertically integrated geostrophic velocity can be directly estimated, but not its vertical structure. This study discusses whether the mesoscale (30–400 km) dynamics of three regions in the South Atlanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2022-02, Vol.127 (2), p.n/a
Hauptverfasser: Miracca‐Lage, Mariana, González‐Haro, Cristina, Napolitano, Dante Campagnoli, Isern‐Fontanet, Jordi, Polito, Paulo Simionatto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Journal of geophysical research. Oceans
container_volume 127
creator Miracca‐Lage, Mariana
González‐Haro, Cristina
Napolitano, Dante Campagnoli
Isern‐Fontanet, Jordi
Polito, Paulo Simionatto
description Satellite altimeters provide quasi‐global measurements of sea surface height, and from those the vertically integrated geostrophic velocity can be directly estimated, but not its vertical structure. This study discusses whether the mesoscale (30–400 km) dynamics of three regions in the South Atlantic can be described by the surface quasi‐geostrophic (SQG) theory, both at the surface and in depth, using outputs from an ocean general circulation model. At these scales, the model surface eddy kinetic energy (EKE) spectra show slopes close to k−5/3 (k−3) in winter (summer), characterizing the SQG and quasi‐geostrophic (QG) turbulence regimes. We use surface density and temperature to (a) reconstruct the stream function under the SQG theory, (b) assess its capability of reproducing mesoscale motions, and (c) identify the main parameters that improve such reconstruction. For mixed layers shallower than 100 m, the changes in the mixed‐layer depth contributes nine times more to the surface SQG reconstruction than the EKE, indicating the strong connection between the quality of the reconstruction and the seasonality of the mixed layer. To further explore the reconstruction vertical extension, we add the barotropic and first baroclinic QG modes to the surface solution. The SQG solutions reproduce the model density and geostrophic velocities in winter, whereas in summer, the interior QG modes prevail. Together, these solutions can improve surface correlations (>0.98) and can depict spatial patterns of mesoscale structures in both the horizontal and vertical domains. Improved spatial resolution from upcoming altimeter missions poses a motivating scenario to extend our findings into future observational studies. Plain Language Summary Altimeters provide sea surface height measurements from which geostrophic velocities can be calculated. However, the measurements are strict to the ocean surface and obtaining its vertical structure is an ongoing challenge. Using outputs from an ocean general circulation model, we focus on describing the dynamics of mesoscale motions (30–400 km) in three regions of the South Atlantic under the surface‐quasi‐geostrophic (SQG) theory. We reconstruct the stream function taking a snapshot of density (and temperature) and assess the capability of the SQG method to correctly reproduce surface and vertical fields. Our results indicate that density may drive mesoscale dynamics under specific environmental conditions, and the role played by the se
doi_str_mv 10.1029/2021JC018001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03671381v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632127924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3800-3f7c09ec817a6cc3ac2e08de290a6684a0bf4d9d273e48801958b61728ef14c53</originalsourceid><addsrcrecordid>eNp9kMFOwkAQhhujiQS5-QCbeFFjdWe3tLsnQyqChIQgcN4syzZdUtq626rcfASf0SexBEI8OZeZw5cv__yedwn4HjDhDwQTGMUYGMZw4rUIhNznhMPp8Y66517HuTVuhgELAt7yVrHMUZVqNKttIpVG01o68_P1PdCFq2xRpkah69l0cIPmqS7sFvU_y0yaHC3KUls0UboRPG1zuTHKIXOQFXWVol6Vybwy6vHCO0tk5nTnsNve4rk_j4f-eDJ4iXtjX9EmtU-TSGGuFYNIhkpRqYjGbKUJxzIMWSDxMglWfEUiqgPGMPAuW4YQEaYTCFSXtr3bvTeVmSit2Ui7FYU0YtgbC5O7WmAaRkAZvEMDX-3h0hZvtXaVWBe1zZt8goSUAIk4CRrqbk8pWzhndXL0Aha73sXf3huc7vEPk-ntv6wYDV5jsvuD_gILw4HD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632127924</pqid></control><display><type>article</type><title>Can the Surface Quasi‐Geostrophic (SQG) Theory Explain Upper Ocean Dynamics in the South Atlantic?</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Miracca‐Lage, Mariana ; González‐Haro, Cristina ; Napolitano, Dante Campagnoli ; Isern‐Fontanet, Jordi ; Polito, Paulo Simionatto</creator><creatorcontrib>Miracca‐Lage, Mariana ; González‐Haro, Cristina ; Napolitano, Dante Campagnoli ; Isern‐Fontanet, Jordi ; Polito, Paulo Simionatto</creatorcontrib><description>Satellite altimeters provide quasi‐global measurements of sea surface height, and from those the vertically integrated geostrophic velocity can be directly estimated, but not its vertical structure. This study discusses whether the mesoscale (30–400 km) dynamics of three regions in the South Atlantic can be described by the surface quasi‐geostrophic (SQG) theory, both at the surface and in depth, using outputs from an ocean general circulation model. At these scales, the model surface eddy kinetic energy (EKE) spectra show slopes close to k−5/3 (k−3) in winter (summer), characterizing the SQG and quasi‐geostrophic (QG) turbulence regimes. We use surface density and temperature to (a) reconstruct the stream function under the SQG theory, (b) assess its capability of reproducing mesoscale motions, and (c) identify the main parameters that improve such reconstruction. For mixed layers shallower than 100 m, the changes in the mixed‐layer depth contributes nine times more to the surface SQG reconstruction than the EKE, indicating the strong connection between the quality of the reconstruction and the seasonality of the mixed layer. To further explore the reconstruction vertical extension, we add the barotropic and first baroclinic QG modes to the surface solution. The SQG solutions reproduce the model density and geostrophic velocities in winter, whereas in summer, the interior QG modes prevail. Together, these solutions can improve surface correlations (&gt;0.98) and can depict spatial patterns of mesoscale structures in both the horizontal and vertical domains. Improved spatial resolution from upcoming altimeter missions poses a motivating scenario to extend our findings into future observational studies. Plain Language Summary Altimeters provide sea surface height measurements from which geostrophic velocities can be calculated. However, the measurements are strict to the ocean surface and obtaining its vertical structure is an ongoing challenge. Using outputs from an ocean general circulation model, we focus on describing the dynamics of mesoscale motions (30–400 km) in three regions of the South Atlantic under the surface‐quasi‐geostrophic (SQG) theory. We reconstruct the stream function taking a snapshot of density (and temperature) and assess the capability of the SQG method to correctly reproduce surface and vertical fields. Our results indicate that density may drive mesoscale dynamics under specific environmental conditions, and the role played by the seasonality of mixed‐layer depth and eddy kinetic energy is discussed. To further explore the vertical reconstruction, we include the barotropic and first baroclinic quasi‐geostrophic (QG) modes to the surface solution, yielding fields highly correlated (&gt;0.98) to the model outputs. The upcoming new high‐resolution altimeters poses a motivating scenario to apply the SQG method of reconstruction and extend our findings into future observational studies. Key Points The surface solution dominates the total stream function in winter. It has a small yet significant contribution in summer The surface quasi‐geostrophic (SQG) and isQG methods depend more on the seasonality of the mixed‐layer depth than on the content of eddy kinetic energy The isQG reconstruction on the South Atlantic can reproduce mesoscale motions at depths above 500 m with a threshold of 0.5 correlation</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2021JC018001</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Altimeters ; Barotropic mode ; Density ; Depth ; Dynamic structural analysis ; Dynamics ; Eddy kinetic energy ; Environmental conditions ; Fields ; General circulation models ; Geophysics ; Kinetic energy ; Mesoscale motions ; Mesoscale phenomena ; Mixed layer ; mixed layer depth ; Modelling ; Modes ; Observational studies ; Ocean dynamics ; Ocean surface ; Oceanic general circulation model ; Oceans ; Parameter identification ; quasi‐geostrophy ; Reconstruction ; Resolution ; Rivers ; Satellite altimetry ; Sciences of the Universe ; Sea surface ; Seasonal variations ; Seasonality ; Spatial discrimination ; Spatial resolution ; spectral slopes ; Stream functions ; Summer ; surface quasi‐geostrophy ; Temperature ; Theories ; Turbulence ; Upper ocean ; Vertical profiles ; Vortices ; Winter</subject><ispartof>Journal of geophysical research. Oceans, 2022-02, Vol.127 (2), p.n/a</ispartof><rights>2022. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3800-3f7c09ec817a6cc3ac2e08de290a6684a0bf4d9d273e48801958b61728ef14c53</citedby><cites>FETCH-LOGICAL-c3800-3f7c09ec817a6cc3ac2e08de290a6684a0bf4d9d273e48801958b61728ef14c53</cites><orcidid>0000-0003-0915-9352 ; 0000-0003-2217-3853 ; 0000-0003-4602-852X ; 0000-0001-9857-9724 ; 0000-0002-9324-608X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JC018001$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JC018001$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03671381$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Miracca‐Lage, Mariana</creatorcontrib><creatorcontrib>González‐Haro, Cristina</creatorcontrib><creatorcontrib>Napolitano, Dante Campagnoli</creatorcontrib><creatorcontrib>Isern‐Fontanet, Jordi</creatorcontrib><creatorcontrib>Polito, Paulo Simionatto</creatorcontrib><title>Can the Surface Quasi‐Geostrophic (SQG) Theory Explain Upper Ocean Dynamics in the South Atlantic?</title><title>Journal of geophysical research. Oceans</title><description>Satellite altimeters provide quasi‐global measurements of sea surface height, and from those the vertically integrated geostrophic velocity can be directly estimated, but not its vertical structure. This study discusses whether the mesoscale (30–400 km) dynamics of three regions in the South Atlantic can be described by the surface quasi‐geostrophic (SQG) theory, both at the surface and in depth, using outputs from an ocean general circulation model. At these scales, the model surface eddy kinetic energy (EKE) spectra show slopes close to k−5/3 (k−3) in winter (summer), characterizing the SQG and quasi‐geostrophic (QG) turbulence regimes. We use surface density and temperature to (a) reconstruct the stream function under the SQG theory, (b) assess its capability of reproducing mesoscale motions, and (c) identify the main parameters that improve such reconstruction. For mixed layers shallower than 100 m, the changes in the mixed‐layer depth contributes nine times more to the surface SQG reconstruction than the EKE, indicating the strong connection between the quality of the reconstruction and the seasonality of the mixed layer. To further explore the reconstruction vertical extension, we add the barotropic and first baroclinic QG modes to the surface solution. The SQG solutions reproduce the model density and geostrophic velocities in winter, whereas in summer, the interior QG modes prevail. Together, these solutions can improve surface correlations (&gt;0.98) and can depict spatial patterns of mesoscale structures in both the horizontal and vertical domains. Improved spatial resolution from upcoming altimeter missions poses a motivating scenario to extend our findings into future observational studies. Plain Language Summary Altimeters provide sea surface height measurements from which geostrophic velocities can be calculated. However, the measurements are strict to the ocean surface and obtaining its vertical structure is an ongoing challenge. Using outputs from an ocean general circulation model, we focus on describing the dynamics of mesoscale motions (30–400 km) in three regions of the South Atlantic under the surface‐quasi‐geostrophic (SQG) theory. We reconstruct the stream function taking a snapshot of density (and temperature) and assess the capability of the SQG method to correctly reproduce surface and vertical fields. Our results indicate that density may drive mesoscale dynamics under specific environmental conditions, and the role played by the seasonality of mixed‐layer depth and eddy kinetic energy is discussed. To further explore the vertical reconstruction, we include the barotropic and first baroclinic quasi‐geostrophic (QG) modes to the surface solution, yielding fields highly correlated (&gt;0.98) to the model outputs. The upcoming new high‐resolution altimeters poses a motivating scenario to apply the SQG method of reconstruction and extend our findings into future observational studies. Key Points The surface solution dominates the total stream function in winter. It has a small yet significant contribution in summer The surface quasi‐geostrophic (SQG) and isQG methods depend more on the seasonality of the mixed‐layer depth than on the content of eddy kinetic energy The isQG reconstruction on the South Atlantic can reproduce mesoscale motions at depths above 500 m with a threshold of 0.5 correlation</description><subject>Altimeters</subject><subject>Barotropic mode</subject><subject>Density</subject><subject>Depth</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Eddy kinetic energy</subject><subject>Environmental conditions</subject><subject>Fields</subject><subject>General circulation models</subject><subject>Geophysics</subject><subject>Kinetic energy</subject><subject>Mesoscale motions</subject><subject>Mesoscale phenomena</subject><subject>Mixed layer</subject><subject>mixed layer depth</subject><subject>Modelling</subject><subject>Modes</subject><subject>Observational studies</subject><subject>Ocean dynamics</subject><subject>Ocean surface</subject><subject>Oceanic general circulation model</subject><subject>Oceans</subject><subject>Parameter identification</subject><subject>quasi‐geostrophy</subject><subject>Reconstruction</subject><subject>Resolution</subject><subject>Rivers</subject><subject>Satellite altimetry</subject><subject>Sciences of the Universe</subject><subject>Sea surface</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>spectral slopes</subject><subject>Stream functions</subject><subject>Summer</subject><subject>surface quasi‐geostrophy</subject><subject>Temperature</subject><subject>Theories</subject><subject>Turbulence</subject><subject>Upper ocean</subject><subject>Vertical profiles</subject><subject>Vortices</subject><subject>Winter</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwkAQhhujiQS5-QCbeFFjdWe3tLsnQyqChIQgcN4syzZdUtq626rcfASf0SexBEI8OZeZw5cv__yedwn4HjDhDwQTGMUYGMZw4rUIhNznhMPp8Y66517HuTVuhgELAt7yVrHMUZVqNKttIpVG01o68_P1PdCFq2xRpkah69l0cIPmqS7sFvU_y0yaHC3KUls0UboRPG1zuTHKIXOQFXWVol6Vybwy6vHCO0tk5nTnsNve4rk_j4f-eDJ4iXtjX9EmtU-TSGGuFYNIhkpRqYjGbKUJxzIMWSDxMglWfEUiqgPGMPAuW4YQEaYTCFSXtr3bvTeVmSit2Ui7FYU0YtgbC5O7WmAaRkAZvEMDX-3h0hZvtXaVWBe1zZt8goSUAIk4CRrqbk8pWzhndXL0Aha73sXf3huc7vEPk-ntv6wYDV5jsvuD_gILw4HD</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Miracca‐Lage, Mariana</creator><creator>González‐Haro, Cristina</creator><creator>Napolitano, Dante Campagnoli</creator><creator>Isern‐Fontanet, Jordi</creator><creator>Polito, Paulo Simionatto</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0915-9352</orcidid><orcidid>https://orcid.org/0000-0003-2217-3853</orcidid><orcidid>https://orcid.org/0000-0003-4602-852X</orcidid><orcidid>https://orcid.org/0000-0001-9857-9724</orcidid><orcidid>https://orcid.org/0000-0002-9324-608X</orcidid></search><sort><creationdate>202202</creationdate><title>Can the Surface Quasi‐Geostrophic (SQG) Theory Explain Upper Ocean Dynamics in the South Atlantic?</title><author>Miracca‐Lage, Mariana ; González‐Haro, Cristina ; Napolitano, Dante Campagnoli ; Isern‐Fontanet, Jordi ; Polito, Paulo Simionatto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3800-3f7c09ec817a6cc3ac2e08de290a6684a0bf4d9d273e48801958b61728ef14c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Altimeters</topic><topic>Barotropic mode</topic><topic>Density</topic><topic>Depth</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Eddy kinetic energy</topic><topic>Environmental conditions</topic><topic>Fields</topic><topic>General circulation models</topic><topic>Geophysics</topic><topic>Kinetic energy</topic><topic>Mesoscale motions</topic><topic>Mesoscale phenomena</topic><topic>Mixed layer</topic><topic>mixed layer depth</topic><topic>Modelling</topic><topic>Modes</topic><topic>Observational studies</topic><topic>Ocean dynamics</topic><topic>Ocean surface</topic><topic>Oceanic general circulation model</topic><topic>Oceans</topic><topic>Parameter identification</topic><topic>quasi‐geostrophy</topic><topic>Reconstruction</topic><topic>Resolution</topic><topic>Rivers</topic><topic>Satellite altimetry</topic><topic>Sciences of the Universe</topic><topic>Sea surface</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>spectral slopes</topic><topic>Stream functions</topic><topic>Summer</topic><topic>surface quasi‐geostrophy</topic><topic>Temperature</topic><topic>Theories</topic><topic>Turbulence</topic><topic>Upper ocean</topic><topic>Vertical profiles</topic><topic>Vortices</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miracca‐Lage, Mariana</creatorcontrib><creatorcontrib>González‐Haro, Cristina</creatorcontrib><creatorcontrib>Napolitano, Dante Campagnoli</creatorcontrib><creatorcontrib>Isern‐Fontanet, Jordi</creatorcontrib><creatorcontrib>Polito, Paulo Simionatto</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miracca‐Lage, Mariana</au><au>González‐Haro, Cristina</au><au>Napolitano, Dante Campagnoli</au><au>Isern‐Fontanet, Jordi</au><au>Polito, Paulo Simionatto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can the Surface Quasi‐Geostrophic (SQG) Theory Explain Upper Ocean Dynamics in the South Atlantic?</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><date>2022-02</date><risdate>2022</risdate><volume>127</volume><issue>2</issue><epage>n/a</epage><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>Satellite altimeters provide quasi‐global measurements of sea surface height, and from those the vertically integrated geostrophic velocity can be directly estimated, but not its vertical structure. This study discusses whether the mesoscale (30–400 km) dynamics of three regions in the South Atlantic can be described by the surface quasi‐geostrophic (SQG) theory, both at the surface and in depth, using outputs from an ocean general circulation model. At these scales, the model surface eddy kinetic energy (EKE) spectra show slopes close to k−5/3 (k−3) in winter (summer), characterizing the SQG and quasi‐geostrophic (QG) turbulence regimes. We use surface density and temperature to (a) reconstruct the stream function under the SQG theory, (b) assess its capability of reproducing mesoscale motions, and (c) identify the main parameters that improve such reconstruction. For mixed layers shallower than 100 m, the changes in the mixed‐layer depth contributes nine times more to the surface SQG reconstruction than the EKE, indicating the strong connection between the quality of the reconstruction and the seasonality of the mixed layer. To further explore the reconstruction vertical extension, we add the barotropic and first baroclinic QG modes to the surface solution. The SQG solutions reproduce the model density and geostrophic velocities in winter, whereas in summer, the interior QG modes prevail. Together, these solutions can improve surface correlations (&gt;0.98) and can depict spatial patterns of mesoscale structures in both the horizontal and vertical domains. Improved spatial resolution from upcoming altimeter missions poses a motivating scenario to extend our findings into future observational studies. Plain Language Summary Altimeters provide sea surface height measurements from which geostrophic velocities can be calculated. However, the measurements are strict to the ocean surface and obtaining its vertical structure is an ongoing challenge. Using outputs from an ocean general circulation model, we focus on describing the dynamics of mesoscale motions (30–400 km) in three regions of the South Atlantic under the surface‐quasi‐geostrophic (SQG) theory. We reconstruct the stream function taking a snapshot of density (and temperature) and assess the capability of the SQG method to correctly reproduce surface and vertical fields. Our results indicate that density may drive mesoscale dynamics under specific environmental conditions, and the role played by the seasonality of mixed‐layer depth and eddy kinetic energy is discussed. To further explore the vertical reconstruction, we include the barotropic and first baroclinic quasi‐geostrophic (QG) modes to the surface solution, yielding fields highly correlated (&gt;0.98) to the model outputs. The upcoming new high‐resolution altimeters poses a motivating scenario to apply the SQG method of reconstruction and extend our findings into future observational studies. Key Points The surface solution dominates the total stream function in winter. It has a small yet significant contribution in summer The surface quasi‐geostrophic (SQG) and isQG methods depend more on the seasonality of the mixed‐layer depth than on the content of eddy kinetic energy The isQG reconstruction on the South Atlantic can reproduce mesoscale motions at depths above 500 m with a threshold of 0.5 correlation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021JC018001</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0915-9352</orcidid><orcidid>https://orcid.org/0000-0003-2217-3853</orcidid><orcidid>https://orcid.org/0000-0003-4602-852X</orcidid><orcidid>https://orcid.org/0000-0001-9857-9724</orcidid><orcidid>https://orcid.org/0000-0002-9324-608X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2022-02, Vol.127 (2), p.n/a
issn 2169-9275
2169-9291
language eng
recordid cdi_hal_primary_oai_HAL_insu_03671381v1
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Altimeters
Barotropic mode
Density
Depth
Dynamic structural analysis
Dynamics
Eddy kinetic energy
Environmental conditions
Fields
General circulation models
Geophysics
Kinetic energy
Mesoscale motions
Mesoscale phenomena
Mixed layer
mixed layer depth
Modelling
Modes
Observational studies
Ocean dynamics
Ocean surface
Oceanic general circulation model
Oceans
Parameter identification
quasi‐geostrophy
Reconstruction
Resolution
Rivers
Satellite altimetry
Sciences of the Universe
Sea surface
Seasonal variations
Seasonality
Spatial discrimination
Spatial resolution
spectral slopes
Stream functions
Summer
surface quasi‐geostrophy
Temperature
Theories
Turbulence
Upper ocean
Vertical profiles
Vortices
Winter
title Can the Surface Quasi‐Geostrophic (SQG) Theory Explain Upper Ocean Dynamics in the South Atlantic?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20the%20Surface%20Quasi%E2%80%90Geostrophic%20(SQG)%20Theory%20Explain%20Upper%20Ocean%20Dynamics%20in%20the%20South%20Atlantic?&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Miracca%E2%80%90Lage,%20Mariana&rft.date=2022-02&rft.volume=127&rft.issue=2&rft.epage=n/a&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1029/2021JC018001&rft_dat=%3Cproquest_hal_p%3E2632127924%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632127924&rft_id=info:pmid/&rfr_iscdi=true