An active source seismo-acoustic experiment using tethered balloons to validate instrument concepts and modelling tools for atmospheric seismology

SUMMARY The measurements of acoustic waves created by a quake are of great interest for planets with hot and dense atmospheres, like Venus, because surface deployments of seismometers will last only a few hours, whereas freeflying balloons could fly many days. Infrasound sensors can also be used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2021-04, Vol.225 (1), p.186-199
Hauptverfasser: Garcia, R F, Martire, L, Chaigneau, Y, Cadu, A, Mimoun, D, Bassas Portus, M, Sournac, A, Sylvander, M, Pauchet, H, Benahmed, S, Martin, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 1
container_start_page 186
container_title Geophysical journal international
container_volume 225
creator Garcia, R F
Martire, L
Chaigneau, Y
Cadu, A
Mimoun, D
Bassas Portus, M
Sournac, A
Sylvander, M
Pauchet, H
Benahmed, S
Martin, R
description SUMMARY The measurements of acoustic waves created by a quake are of great interest for planets with hot and dense atmospheres, like Venus, because surface deployments of seismometers will last only a few hours, whereas freeflying balloons could fly many days. Infrasound sensors can also be used to constrain subsurface properties during active seismic experiments. This study presents a controlled source seismo-acoustic experiment using infrasonic sensors and accelerometers mounted on a tethered helium balloon. Both the acoustic waves generated below the balloon by seismic surface waves, and the ones generated by strong ground motions above the seismic source are clearly observed and separated on the records of the various instruments. This data set allows various validations and investigations. First, it validates the ground to air coupling theory and our numerical modelling tools. Then, it allows us to demonstrate that antenna processing of infrasound sensors deployed below the balloon can estimate the arrival incidence angle of the acoustic waves within 10°. Finally, a polarization analysis of the accelerometers taped on the balloon envelope is presented. It demonstrates that accelerometer records are strongly dependent on their location on the balloon due to its deformations and rotations. However, the different acoustic signals can be distinguished through their polarization, and a best sensor location is estimated at the bottom of the balloon envelope. These results are a first step towards detecting and locating seismic activity using airborne acoustic sensors on Venus and elsewhere. However, some observations of earthquake signals in a more realistic geometry are still missing.
doi_str_mv 10.1093/gji/ggaa589
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03661472v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggaa589</oup_id><sourcerecordid>10.1093/gji/ggaa589</sourcerecordid><originalsourceid>FETCH-LOGICAL-a359t-6296ba19d97e6f11ab734e6c021b3f07c328074b712be36d66bfffd0dbd896843</originalsourceid><addsrcrecordid>eNp9kLFOwzAARC0EEqUw8QOeGEChdpw48VhVQJEqsYDUzXJsJ3XlxFHsVPAbfDGmqRiZbnl3pzsAbjF6xIiRRbM3i6YRIi_ZGZhhQvMkzej2HMwQy2mSZ2h7Ca683yOEM5yVM_C97KCQwRw09G4cZBRtfOsSId3og5FQf_Z6MK3uAhy96RoYdNjpQStYCWud6zwMDh6ENUoEDU3nwzAecek6qfvgoegUbJ3S1h79zlkPazdAEVrn-xgWa6Za65qva3BRC-v1zUnn4OP56X21TjZvL6-r5SYRJGchoSmjlcBMsULTGmNRFSTTVKIUV6RGhSRpiYqsKnBaaUIVpVVd1wqpSpWMlhmZg_spdycs7-NEMXxxJwxfLzc8zhg5IpTirEgPOMIPEywH5_2g6z8HRvz3ex6_56fvI3030W7s_wV_ANo8imM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An active source seismo-acoustic experiment using tethered balloons to validate instrument concepts and modelling tools for atmospheric seismology</title><source>Oxford Journals Open Access Collection</source><creator>Garcia, R F ; Martire, L ; Chaigneau, Y ; Cadu, A ; Mimoun, D ; Bassas Portus, M ; Sournac, A ; Sylvander, M ; Pauchet, H ; Benahmed, S ; Martin, R</creator><creatorcontrib>Garcia, R F ; Martire, L ; Chaigneau, Y ; Cadu, A ; Mimoun, D ; Bassas Portus, M ; Sournac, A ; Sylvander, M ; Pauchet, H ; Benahmed, S ; Martin, R</creatorcontrib><description>SUMMARY The measurements of acoustic waves created by a quake are of great interest for planets with hot and dense atmospheres, like Venus, because surface deployments of seismometers will last only a few hours, whereas freeflying balloons could fly many days. Infrasound sensors can also be used to constrain subsurface properties during active seismic experiments. This study presents a controlled source seismo-acoustic experiment using infrasonic sensors and accelerometers mounted on a tethered helium balloon. Both the acoustic waves generated below the balloon by seismic surface waves, and the ones generated by strong ground motions above the seismic source are clearly observed and separated on the records of the various instruments. This data set allows various validations and investigations. First, it validates the ground to air coupling theory and our numerical modelling tools. Then, it allows us to demonstrate that antenna processing of infrasound sensors deployed below the balloon can estimate the arrival incidence angle of the acoustic waves within 10°. Finally, a polarization analysis of the accelerometers taped on the balloon envelope is presented. It demonstrates that accelerometer records are strongly dependent on their location on the balloon due to its deformations and rotations. However, the different acoustic signals can be distinguished through their polarization, and a best sensor location is estimated at the bottom of the balloon envelope. These results are a first step towards detecting and locating seismic activity using airborne acoustic sensors on Venus and elsewhere. However, some observations of earthquake signals in a more realistic geometry are still missing.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggaa589</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Sciences of the Universe</subject><ispartof>Geophysical journal international, 2021-04, Vol.225 (1), p.186-199</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a359t-6296ba19d97e6f11ab734e6c021b3f07c328074b712be36d66bfffd0dbd896843</citedby><cites>FETCH-LOGICAL-a359t-6296ba19d97e6f11ab734e6c021b3f07c328074b712be36d66bfffd0dbd896843</cites><orcidid>0000-0003-1460-6663 ; 0000-0002-3427-2974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,1599,27905,27906</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/gji/ggaa589$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-03661472$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, R F</creatorcontrib><creatorcontrib>Martire, L</creatorcontrib><creatorcontrib>Chaigneau, Y</creatorcontrib><creatorcontrib>Cadu, A</creatorcontrib><creatorcontrib>Mimoun, D</creatorcontrib><creatorcontrib>Bassas Portus, M</creatorcontrib><creatorcontrib>Sournac, A</creatorcontrib><creatorcontrib>Sylvander, M</creatorcontrib><creatorcontrib>Pauchet, H</creatorcontrib><creatorcontrib>Benahmed, S</creatorcontrib><creatorcontrib>Martin, R</creatorcontrib><title>An active source seismo-acoustic experiment using tethered balloons to validate instrument concepts and modelling tools for atmospheric seismology</title><title>Geophysical journal international</title><description>SUMMARY The measurements of acoustic waves created by a quake are of great interest for planets with hot and dense atmospheres, like Venus, because surface deployments of seismometers will last only a few hours, whereas freeflying balloons could fly many days. Infrasound sensors can also be used to constrain subsurface properties during active seismic experiments. This study presents a controlled source seismo-acoustic experiment using infrasonic sensors and accelerometers mounted on a tethered helium balloon. Both the acoustic waves generated below the balloon by seismic surface waves, and the ones generated by strong ground motions above the seismic source are clearly observed and separated on the records of the various instruments. This data set allows various validations and investigations. First, it validates the ground to air coupling theory and our numerical modelling tools. Then, it allows us to demonstrate that antenna processing of infrasound sensors deployed below the balloon can estimate the arrival incidence angle of the acoustic waves within 10°. Finally, a polarization analysis of the accelerometers taped on the balloon envelope is presented. It demonstrates that accelerometer records are strongly dependent on their location on the balloon due to its deformations and rotations. However, the different acoustic signals can be distinguished through their polarization, and a best sensor location is estimated at the bottom of the balloon envelope. These results are a first step towards detecting and locating seismic activity using airborne acoustic sensors on Venus and elsewhere. However, some observations of earthquake signals in a more realistic geometry are still missing.</description><subject>Sciences of the Universe</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAARC0EEqUw8QOeGEChdpw48VhVQJEqsYDUzXJsJ3XlxFHsVPAbfDGmqRiZbnl3pzsAbjF6xIiRRbM3i6YRIi_ZGZhhQvMkzej2HMwQy2mSZ2h7Ca683yOEM5yVM_C97KCQwRw09G4cZBRtfOsSId3og5FQf_Z6MK3uAhy96RoYdNjpQStYCWud6zwMDh6ENUoEDU3nwzAecek6qfvgoegUbJ3S1h79zlkPazdAEVrn-xgWa6Za65qva3BRC-v1zUnn4OP56X21TjZvL6-r5SYRJGchoSmjlcBMsULTGmNRFSTTVKIUV6RGhSRpiYqsKnBaaUIVpVVd1wqpSpWMlhmZg_spdycs7-NEMXxxJwxfLzc8zhg5IpTirEgPOMIPEywH5_2g6z8HRvz3ex6_56fvI3030W7s_wV_ANo8imM</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Garcia, R F</creator><creator>Martire, L</creator><creator>Chaigneau, Y</creator><creator>Cadu, A</creator><creator>Mimoun, D</creator><creator>Bassas Portus, M</creator><creator>Sournac, A</creator><creator>Sylvander, M</creator><creator>Pauchet, H</creator><creator>Benahmed, S</creator><creator>Martin, R</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1460-6663</orcidid><orcidid>https://orcid.org/0000-0002-3427-2974</orcidid></search><sort><creationdate>20210401</creationdate><title>An active source seismo-acoustic experiment using tethered balloons to validate instrument concepts and modelling tools for atmospheric seismology</title><author>Garcia, R F ; Martire, L ; Chaigneau, Y ; Cadu, A ; Mimoun, D ; Bassas Portus, M ; Sournac, A ; Sylvander, M ; Pauchet, H ; Benahmed, S ; Martin, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a359t-6296ba19d97e6f11ab734e6c021b3f07c328074b712be36d66bfffd0dbd896843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, R F</creatorcontrib><creatorcontrib>Martire, L</creatorcontrib><creatorcontrib>Chaigneau, Y</creatorcontrib><creatorcontrib>Cadu, A</creatorcontrib><creatorcontrib>Mimoun, D</creatorcontrib><creatorcontrib>Bassas Portus, M</creatorcontrib><creatorcontrib>Sournac, A</creatorcontrib><creatorcontrib>Sylvander, M</creatorcontrib><creatorcontrib>Pauchet, H</creatorcontrib><creatorcontrib>Benahmed, S</creatorcontrib><creatorcontrib>Martin, R</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia, R F</au><au>Martire, L</au><au>Chaigneau, Y</au><au>Cadu, A</au><au>Mimoun, D</au><au>Bassas Portus, M</au><au>Sournac, A</au><au>Sylvander, M</au><au>Pauchet, H</au><au>Benahmed, S</au><au>Martin, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An active source seismo-acoustic experiment using tethered balloons to validate instrument concepts and modelling tools for atmospheric seismology</atitle><jtitle>Geophysical journal international</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>225</volume><issue>1</issue><spage>186</spage><epage>199</epage><pages>186-199</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY The measurements of acoustic waves created by a quake are of great interest for planets with hot and dense atmospheres, like Venus, because surface deployments of seismometers will last only a few hours, whereas freeflying balloons could fly many days. Infrasound sensors can also be used to constrain subsurface properties during active seismic experiments. This study presents a controlled source seismo-acoustic experiment using infrasonic sensors and accelerometers mounted on a tethered helium balloon. Both the acoustic waves generated below the balloon by seismic surface waves, and the ones generated by strong ground motions above the seismic source are clearly observed and separated on the records of the various instruments. This data set allows various validations and investigations. First, it validates the ground to air coupling theory and our numerical modelling tools. Then, it allows us to demonstrate that antenna processing of infrasound sensors deployed below the balloon can estimate the arrival incidence angle of the acoustic waves within 10°. Finally, a polarization analysis of the accelerometers taped on the balloon envelope is presented. It demonstrates that accelerometer records are strongly dependent on their location on the balloon due to its deformations and rotations. However, the different acoustic signals can be distinguished through their polarization, and a best sensor location is estimated at the bottom of the balloon envelope. These results are a first step towards detecting and locating seismic activity using airborne acoustic sensors on Venus and elsewhere. However, some observations of earthquake signals in a more realistic geometry are still missing.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggaa589</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1460-6663</orcidid><orcidid>https://orcid.org/0000-0002-3427-2974</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2021-04, Vol.225 (1), p.186-199
issn 0956-540X
1365-246X
language eng
recordid cdi_hal_primary_oai_HAL_insu_03661472v1
source Oxford Journals Open Access Collection
subjects Sciences of the Universe
title An active source seismo-acoustic experiment using tethered balloons to validate instrument concepts and modelling tools for atmospheric seismology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20active%20source%20seismo-acoustic%20experiment%20using%20tethered%20balloons%20to%20validate%20instrument%20concepts%20and%20modelling%20tools%20for%20atmospheric%20seismology&rft.jtitle=Geophysical%20journal%20international&rft.au=Garcia,%20R%20F&rft.date=2021-04-01&rft.volume=225&rft.issue=1&rft.spage=186&rft.epage=199&rft.pages=186-199&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggaa589&rft_dat=%3Coup_TOX%3E10.1093/gji/ggaa589%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggaa589&rfr_iscdi=true