Uncertainty-aware learning for improvements in image quality of the Canada–France–Hawaii Telescope
ABSTRACT We leverage state-of-the-art machine learning methods and a decade’s worth of archival data from Canada–France–Hawaii Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating parameters. Specifically, we develop accurate and interpre...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2022-02, Vol.510 (1), p.870-902 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 902 |
---|---|
container_issue | 1 |
container_start_page | 870 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 510 |
creator | Gilda, Sankalp Draper, Stark C Fabbro, Sébastien Mahoney, William Prunet, Simon Withington, Kanoa Wilson, Matthew Ting, Yuan-Sen Sheinis, Andrew |
description | ABSTRACT
We leverage state-of-the-art machine learning methods and a decade’s worth of archival data from Canada–France–Hawaii Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating parameters. Specifically, we develop accurate and interpretable models of the complex dependence between data features and observed IQ for CFHT’s wide-field camera, MegaCam. Our contributions are several-fold. First, we collect, collate, and reprocess several disparate data sets gathered by CFHT scientists. Second, we predict probability distribution functions of IQ and achieve a mean absolute error of ∼0.07 arcsec for the predicted medians. Third, we explore the data-driven actuation of the 12 dome ‘vents’ installed in 2013–14 to accelerate the flushing of hot air from the dome. We leverage epistemic and aleatoric uncertainties in conjunction with probabilistic generative modelling to identify candidate vent adjustments that are in-distribution (ID); for the optimal configuration for each ID sample, we predict the reduction in required observing time to achieve a fixed signal-to-noise ratio. On average, the reduction is $\sim 12{{\ \rm per\ cent}}$. Finally, we rank input features by their Shapley values to identify the most predictive variables for each observation. Our long-term goal is to construct reliable and real-time models that can forecast optimal observatory operating parameters to optimize IQ. We can then feed such forecasts into scheduling protocols and predictive maintenance routines. We anticipate that such approaches will become standard in automating observatory operations and maintenance by the time CFHT’s successor, the Maunakea Spectroscopic Explorer, is installed in the next decade. |
doi_str_mv | 10.1093/mnras/stab3243 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03656923v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab3243</oup_id><sourcerecordid>10.1093/mnras/stab3243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-39a20bea779bed29cc30dd6ecc5ba9779a160b5630d79861549aab55537ff9fd3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqWwMnsFKa0dx049VhVQpEos7WxdHLs1Sp1gp0Xd-A_8Q34JhgIr0909vfd0-hC6pmREiWTjrQ8Qx7GHiuUFO0EDygTPcinEKRoQwng2KSk9RxcxPhNCCpaLAbIrr03owfn-kMErBIMbA8E7v8a2Ddhtu9Duzdb4PmLn0w1rg1920Lj-gFuL-43BM_BQw8fb-32AVJeWeapyDi9NY6JuO3OJziw00Vz9zCFa3d8tZ_Ns8fTwOJsuMs2KSZ8xCTmpDJSlrEydS60ZqWthtOYVyKQCFaTiIqmlnAjKCwlQcc5Zaa20NRui22PvBhrVhfRtOKgWnJpPF8r5uFMkQREyZ3uazKOjWYc2xmDsX4IS9YVUfSNVv0hT4OYYaHfdf95PWtF9zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty-aware learning for improvements in image quality of the Canada–France–Hawaii Telescope</title><source>Oxford Journals Open Access Collection</source><creator>Gilda, Sankalp ; Draper, Stark C ; Fabbro, Sébastien ; Mahoney, William ; Prunet, Simon ; Withington, Kanoa ; Wilson, Matthew ; Ting, Yuan-Sen ; Sheinis, Andrew</creator><creatorcontrib>Gilda, Sankalp ; Draper, Stark C ; Fabbro, Sébastien ; Mahoney, William ; Prunet, Simon ; Withington, Kanoa ; Wilson, Matthew ; Ting, Yuan-Sen ; Sheinis, Andrew</creatorcontrib><description>ABSTRACT
We leverage state-of-the-art machine learning methods and a decade’s worth of archival data from Canada–France–Hawaii Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating parameters. Specifically, we develop accurate and interpretable models of the complex dependence between data features and observed IQ for CFHT’s wide-field camera, MegaCam. Our contributions are several-fold. First, we collect, collate, and reprocess several disparate data sets gathered by CFHT scientists. Second, we predict probability distribution functions of IQ and achieve a mean absolute error of ∼0.07 arcsec for the predicted medians. Third, we explore the data-driven actuation of the 12 dome ‘vents’ installed in 2013–14 to accelerate the flushing of hot air from the dome. We leverage epistemic and aleatoric uncertainties in conjunction with probabilistic generative modelling to identify candidate vent adjustments that are in-distribution (ID); for the optimal configuration for each ID sample, we predict the reduction in required observing time to achieve a fixed signal-to-noise ratio. On average, the reduction is $\sim 12{{\ \rm per\ cent}}$. Finally, we rank input features by their Shapley values to identify the most predictive variables for each observation. Our long-term goal is to construct reliable and real-time models that can forecast optimal observatory operating parameters to optimize IQ. We can then feed such forecasts into scheduling protocols and predictive maintenance routines. We anticipate that such approaches will become standard in automating observatory operations and maintenance by the time CFHT’s successor, the Maunakea Spectroscopic Explorer, is installed in the next decade.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab3243</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Sciences of the Universe</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2022-02, Vol.510 (1), p.870-902</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-39a20bea779bed29cc30dd6ecc5ba9779a160b5630d79861549aab55537ff9fd3</citedby><cites>FETCH-LOGICAL-c348t-39a20bea779bed29cc30dd6ecc5ba9779a160b5630d79861549aab55537ff9fd3</cites><orcidid>0000-0002-3645-4501 ; 0000-0003-2239-7988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab3243$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-03656923$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilda, Sankalp</creatorcontrib><creatorcontrib>Draper, Stark C</creatorcontrib><creatorcontrib>Fabbro, Sébastien</creatorcontrib><creatorcontrib>Mahoney, William</creatorcontrib><creatorcontrib>Prunet, Simon</creatorcontrib><creatorcontrib>Withington, Kanoa</creatorcontrib><creatorcontrib>Wilson, Matthew</creatorcontrib><creatorcontrib>Ting, Yuan-Sen</creatorcontrib><creatorcontrib>Sheinis, Andrew</creatorcontrib><title>Uncertainty-aware learning for improvements in image quality of the Canada–France–Hawaii Telescope</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
We leverage state-of-the-art machine learning methods and a decade’s worth of archival data from Canada–France–Hawaii Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating parameters. Specifically, we develop accurate and interpretable models of the complex dependence between data features and observed IQ for CFHT’s wide-field camera, MegaCam. Our contributions are several-fold. First, we collect, collate, and reprocess several disparate data sets gathered by CFHT scientists. Second, we predict probability distribution functions of IQ and achieve a mean absolute error of ∼0.07 arcsec for the predicted medians. Third, we explore the data-driven actuation of the 12 dome ‘vents’ installed in 2013–14 to accelerate the flushing of hot air from the dome. We leverage epistemic and aleatoric uncertainties in conjunction with probabilistic generative modelling to identify candidate vent adjustments that are in-distribution (ID); for the optimal configuration for each ID sample, we predict the reduction in required observing time to achieve a fixed signal-to-noise ratio. On average, the reduction is $\sim 12{{\ \rm per\ cent}}$. Finally, we rank input features by their Shapley values to identify the most predictive variables for each observation. Our long-term goal is to construct reliable and real-time models that can forecast optimal observatory operating parameters to optimize IQ. We can then feed such forecasts into scheduling protocols and predictive maintenance routines. We anticipate that such approaches will become standard in automating observatory operations and maintenance by the time CFHT’s successor, the Maunakea Spectroscopic Explorer, is installed in the next decade.</description><subject>Sciences of the Universe</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqWwMnsFKa0dx049VhVQpEos7WxdHLs1Sp1gp0Xd-A_8Q34JhgIr0909vfd0-hC6pmREiWTjrQ8Qx7GHiuUFO0EDygTPcinEKRoQwng2KSk9RxcxPhNCCpaLAbIrr03owfn-kMErBIMbA8E7v8a2Ddhtu9Duzdb4PmLn0w1rg1920Lj-gFuL-43BM_BQw8fb-32AVJeWeapyDi9NY6JuO3OJziw00Vz9zCFa3d8tZ_Ns8fTwOJsuMs2KSZ8xCTmpDJSlrEydS60ZqWthtOYVyKQCFaTiIqmlnAjKCwlQcc5Zaa20NRui22PvBhrVhfRtOKgWnJpPF8r5uFMkQREyZ3uazKOjWYc2xmDsX4IS9YVUfSNVv0hT4OYYaHfdf95PWtF9zw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gilda, Sankalp</creator><creator>Draper, Stark C</creator><creator>Fabbro, Sébastien</creator><creator>Mahoney, William</creator><creator>Prunet, Simon</creator><creator>Withington, Kanoa</creator><creator>Wilson, Matthew</creator><creator>Ting, Yuan-Sen</creator><creator>Sheinis, Andrew</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3645-4501</orcidid><orcidid>https://orcid.org/0000-0003-2239-7988</orcidid></search><sort><creationdate>20220201</creationdate><title>Uncertainty-aware learning for improvements in image quality of the Canada–France–Hawaii Telescope</title><author>Gilda, Sankalp ; Draper, Stark C ; Fabbro, Sébastien ; Mahoney, William ; Prunet, Simon ; Withington, Kanoa ; Wilson, Matthew ; Ting, Yuan-Sen ; Sheinis, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-39a20bea779bed29cc30dd6ecc5ba9779a160b5630d79861549aab55537ff9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilda, Sankalp</creatorcontrib><creatorcontrib>Draper, Stark C</creatorcontrib><creatorcontrib>Fabbro, Sébastien</creatorcontrib><creatorcontrib>Mahoney, William</creatorcontrib><creatorcontrib>Prunet, Simon</creatorcontrib><creatorcontrib>Withington, Kanoa</creatorcontrib><creatorcontrib>Wilson, Matthew</creatorcontrib><creatorcontrib>Ting, Yuan-Sen</creatorcontrib><creatorcontrib>Sheinis, Andrew</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gilda, Sankalp</au><au>Draper, Stark C</au><au>Fabbro, Sébastien</au><au>Mahoney, William</au><au>Prunet, Simon</au><au>Withington, Kanoa</au><au>Wilson, Matthew</au><au>Ting, Yuan-Sen</au><au>Sheinis, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty-aware learning for improvements in image quality of the Canada–France–Hawaii Telescope</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>510</volume><issue>1</issue><spage>870</spage><epage>902</epage><pages>870-902</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
We leverage state-of-the-art machine learning methods and a decade’s worth of archival data from Canada–France–Hawaii Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating parameters. Specifically, we develop accurate and interpretable models of the complex dependence between data features and observed IQ for CFHT’s wide-field camera, MegaCam. Our contributions are several-fold. First, we collect, collate, and reprocess several disparate data sets gathered by CFHT scientists. Second, we predict probability distribution functions of IQ and achieve a mean absolute error of ∼0.07 arcsec for the predicted medians. Third, we explore the data-driven actuation of the 12 dome ‘vents’ installed in 2013–14 to accelerate the flushing of hot air from the dome. We leverage epistemic and aleatoric uncertainties in conjunction with probabilistic generative modelling to identify candidate vent adjustments that are in-distribution (ID); for the optimal configuration for each ID sample, we predict the reduction in required observing time to achieve a fixed signal-to-noise ratio. On average, the reduction is $\sim 12{{\ \rm per\ cent}}$. Finally, we rank input features by their Shapley values to identify the most predictive variables for each observation. Our long-term goal is to construct reliable and real-time models that can forecast optimal observatory operating parameters to optimize IQ. We can then feed such forecasts into scheduling protocols and predictive maintenance routines. We anticipate that such approaches will become standard in automating observatory operations and maintenance by the time CFHT’s successor, the Maunakea Spectroscopic Explorer, is installed in the next decade.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab3243</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-3645-4501</orcidid><orcidid>https://orcid.org/0000-0003-2239-7988</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2022-02, Vol.510 (1), p.870-902 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03656923v1 |
source | Oxford Journals Open Access Collection |
subjects | Sciences of the Universe |
title | Uncertainty-aware learning for improvements in image quality of the Canada–France–Hawaii Telescope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty-aware%20learning%20for%20improvements%20in%20image%20quality%20of%20the%20Canada%E2%80%93France%E2%80%93Hawaii%20Telescope&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Gilda,%20Sankalp&rft.date=2022-02-01&rft.volume=510&rft.issue=1&rft.spage=870&rft.epage=902&rft.pages=870-902&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab3243&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab3243%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab3243&rfr_iscdi=true |