Calcium isotope ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes

The oceanic mass balance of calcium (Ca) is defined by a balance between the inputs (rivers and hydrothermal) and outputs (bulk carbonate) of Ca. Large rivers were analyzed for Ca isotope ratios (44Ca/42Ca, expressed as Ca) to investigate the source and cycling of riverine Ca, and to add an isotopic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2010-09, Vol.24 (3), p.np-n/a
Hauptverfasser: Tipper, E. T., Gaillardet, J., Galy, A., Louvat, P., Bickle, M. J., Capmas, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page np
container_title Global biogeochemical cycles
container_volume 24
creator Tipper, E. T.
Gaillardet, J.
Galy, A.
Louvat, P.
Bickle, M. J.
Capmas, F.
description The oceanic mass balance of calcium (Ca) is defined by a balance between the inputs (rivers and hydrothermal) and outputs (bulk carbonate) of Ca. Large rivers were analyzed for Ca isotope ratios (44Ca/42Ca, expressed as Ca) to investigate the source and cycling of riverine Ca, and to add an isotopic mass balance constraint to the oceanic budget of Ca. The new data account for approximately one‐third of the total Ca supplied to the oceans by rivers. Inter‐sample and seasonal variability was assessed by analyzing more than one sample for many rivers. The range in the Ca of large rivers at high water stand is extremely narrow at 0.27‰. Variations in Ca do not correlate with proxies for carbonate, silicate or evaporite derived Ca, and are more likely related either to inherent variability in the lithological sources of Ca or to process related fractionation. The spread in riverine Ca overlaps with the spread in marine limestone Ca consistent with most riverine Ca coming from the recycling of limestones. The Ca isotope composition of continental runoff has an average Ca value of 0.38 ± 0.04‰, identical to recent (5 M.yr) bulk carbonate ooze (0.33 ± 0.13‰, 2S.D.). Isotopic mass balance constrains that the input and output fluxes of Ca to and from the oceans, are balanced to within 15% over time‐scales similar to the residence time of Ca in the oceans (1 M.yr). A greater imbalance between the fluxes would result in a detectable difference between the Ca value of bulk carbonate and the riverine input at the current level of uncertainty. The input and output fluxes could be imbalanced over much shorter time‐scales (such as glacial‐interglacial cycles), in which case the ocean‐carbonate system will not yet have responded, because of the long residence time of Ca. The maximum current flux imbalance of 15% would be sufficient to account for the total variations in Ca concentration over the Tertiary. Such an interpretation is not unique, but is the simplest interpretation given the similarity between the input and output isotopic compositions, and rules out hypotheses of extreme imbalance in the recent global biogeochemical cycle of Ca.
doi_str_mv 10.1029/2009GB003574
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03605292v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554392451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5448-127f8618831092416a1335fc2d1bb67dc7b16c45050558dca9908b71139318773</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhlcIJELhxg-wkBAIseDxt7mlaUkQAS4gJC6W43ipy-462Ltt-u9xtFGEOCAf5vK8z3hmquop4DeAiX5LMNbLc4wpl-xeNQPNWK0JYferGVZK1IJQ8bB6lPM1xsA417NqXNjWhbFDIcch7jxKdggxo9Cj4cqj25ja7YuMWpt--jygFG58yu_QHLnY5yHZ0A8oTmxn96E7mLqNbW3vPIoNis7bPjjkjm2adtz7_Lh60Ng2-yfHelZ9e3_5dbGq11-WHxbzde04Y6oGIhslQCkKWBMGwgKlvHFkC5uNkFsnNyAc47g8rrbOao3VRgJQTUFJSc-qV5P3yrZml0Jn052JNpjVfG1Cn0eDqcCcaHIDBX45wbsUf49lWtOF7HxbZvFxzAY4wVRqTg_eZ_-g13FMfRnFaGCld5EW6PUEuRRzTr45_QCwOdzL_H2vgj8_Om0u22pSWWHIpwyhjBAtD1qYuNvQ-rv_Os3yfAFCq5Kpp0zIg9-fMjb9MkJSyc33z0tz8emHXH3EsrT6A8qJr2E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914318605</pqid></control><display><type>article</type><title>Calcium isotope ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tipper, E. T. ; Gaillardet, J. ; Galy, A. ; Louvat, P. ; Bickle, M. J. ; Capmas, F.</creator><creatorcontrib>Tipper, E. T. ; Gaillardet, J. ; Galy, A. ; Louvat, P. ; Bickle, M. J. ; Capmas, F.</creatorcontrib><description>The oceanic mass balance of calcium (Ca) is defined by a balance between the inputs (rivers and hydrothermal) and outputs (bulk carbonate) of Ca. Large rivers were analyzed for Ca isotope ratios (44Ca/42Ca, expressed as Ca) to investigate the source and cycling of riverine Ca, and to add an isotopic mass balance constraint to the oceanic budget of Ca. The new data account for approximately one‐third of the total Ca supplied to the oceans by rivers. Inter‐sample and seasonal variability was assessed by analyzing more than one sample for many rivers. The range in the Ca of large rivers at high water stand is extremely narrow at 0.27‰. Variations in Ca do not correlate with proxies for carbonate, silicate or evaporite derived Ca, and are more likely related either to inherent variability in the lithological sources of Ca or to process related fractionation. The spread in riverine Ca overlaps with the spread in marine limestone Ca consistent with most riverine Ca coming from the recycling of limestones. The Ca isotope composition of continental runoff has an average Ca value of 0.38 ± 0.04‰, identical to recent (5 M.yr) bulk carbonate ooze (0.33 ± 0.13‰, 2S.D.). Isotopic mass balance constrains that the input and output fluxes of Ca to and from the oceans, are balanced to within 15% over time‐scales similar to the residence time of Ca in the oceans (1 M.yr). A greater imbalance between the fluxes would result in a detectable difference between the Ca value of bulk carbonate and the riverine input at the current level of uncertainty. The input and output fluxes could be imbalanced over much shorter time‐scales (such as glacial‐interglacial cycles), in which case the ocean‐carbonate system will not yet have responded, because of the long residence time of Ca. The maximum current flux imbalance of 15% would be sufficient to account for the total variations in Ca concentration over the Tertiary. Such an interpretation is not unique, but is the simplest interpretation given the similarity between the input and output isotopic compositions, and rules out hypotheses of extreme imbalance in the recent global biogeochemical cycle of Ca.</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>EISSN: 1944-8224</identifier><identifier>DOI: 10.1029/2009GB003574</identifier><identifier>CODEN: GBCYEP</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Biogeochemical cycles ; Calcium ; Climate change ; Earth ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fractionation ; Fresh water ; Geochemistry ; global budgets ; Hydrology ; Hydrology. Hydrogeology ; Isotope geochemistry ; Isotope geochemistry. Geochronology ; Isotopes ; Limestone ; Mineralogy ; Oceans ; Rivers ; Sciences of the Universe ; Seasonal variations ; Silicates ; Water geochemistry ; weathering</subject><ispartof>Global biogeochemical cycles, 2010-09, Vol.24 (3), p.np-n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5448-127f8618831092416a1335fc2d1bb67dc7b16c45050558dca9908b71139318773</citedby><cites>FETCH-LOGICAL-c5448-127f8618831092416a1335fc2d1bb67dc7b16c45050558dca9908b71139318773</cites><orcidid>0000-0001-7982-1159 ; 0000-0003-1972-0633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GB003574$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GB003574$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23422975$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-03605292$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tipper, E. T.</creatorcontrib><creatorcontrib>Gaillardet, J.</creatorcontrib><creatorcontrib>Galy, A.</creatorcontrib><creatorcontrib>Louvat, P.</creatorcontrib><creatorcontrib>Bickle, M. J.</creatorcontrib><creatorcontrib>Capmas, F.</creatorcontrib><title>Calcium isotope ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes</title><title>Global biogeochemical cycles</title><addtitle>Global Biogeochem. Cycles</addtitle><description>The oceanic mass balance of calcium (Ca) is defined by a balance between the inputs (rivers and hydrothermal) and outputs (bulk carbonate) of Ca. Large rivers were analyzed for Ca isotope ratios (44Ca/42Ca, expressed as Ca) to investigate the source and cycling of riverine Ca, and to add an isotopic mass balance constraint to the oceanic budget of Ca. The new data account for approximately one‐third of the total Ca supplied to the oceans by rivers. Inter‐sample and seasonal variability was assessed by analyzing more than one sample for many rivers. The range in the Ca of large rivers at high water stand is extremely narrow at 0.27‰. Variations in Ca do not correlate with proxies for carbonate, silicate or evaporite derived Ca, and are more likely related either to inherent variability in the lithological sources of Ca or to process related fractionation. The spread in riverine Ca overlaps with the spread in marine limestone Ca consistent with most riverine Ca coming from the recycling of limestones. The Ca isotope composition of continental runoff has an average Ca value of 0.38 ± 0.04‰, identical to recent (5 M.yr) bulk carbonate ooze (0.33 ± 0.13‰, 2S.D.). Isotopic mass balance constrains that the input and output fluxes of Ca to and from the oceans, are balanced to within 15% over time‐scales similar to the residence time of Ca in the oceans (1 M.yr). A greater imbalance between the fluxes would result in a detectable difference between the Ca value of bulk carbonate and the riverine input at the current level of uncertainty. The input and output fluxes could be imbalanced over much shorter time‐scales (such as glacial‐interglacial cycles), in which case the ocean‐carbonate system will not yet have responded, because of the long residence time of Ca. The maximum current flux imbalance of 15% would be sufficient to account for the total variations in Ca concentration over the Tertiary. Such an interpretation is not unique, but is the simplest interpretation given the similarity between the input and output isotopic compositions, and rules out hypotheses of extreme imbalance in the recent global biogeochemical cycle of Ca.</description><subject>Biogeochemical cycles</subject><subject>Calcium</subject><subject>Climate change</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fractionation</subject><subject>Fresh water</subject><subject>Geochemistry</subject><subject>global budgets</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Isotope geochemistry</subject><subject>Isotope geochemistry. Geochronology</subject><subject>Isotopes</subject><subject>Limestone</subject><subject>Mineralogy</subject><subject>Oceans</subject><subject>Rivers</subject><subject>Sciences of the Universe</subject><subject>Seasonal variations</subject><subject>Silicates</subject><subject>Water geochemistry</subject><subject>weathering</subject><issn>0886-6236</issn><issn>1944-9224</issn><issn>1944-8224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1vEzEQhlcIJELhxg-wkBAIseDxt7mlaUkQAS4gJC6W43ipy-462Ltt-u9xtFGEOCAf5vK8z3hmquop4DeAiX5LMNbLc4wpl-xeNQPNWK0JYferGVZK1IJQ8bB6lPM1xsA417NqXNjWhbFDIcch7jxKdggxo9Cj4cqj25ja7YuMWpt--jygFG58yu_QHLnY5yHZ0A8oTmxn96E7mLqNbW3vPIoNis7bPjjkjm2adtz7_Lh60Ng2-yfHelZ9e3_5dbGq11-WHxbzde04Y6oGIhslQCkKWBMGwgKlvHFkC5uNkFsnNyAc47g8rrbOao3VRgJQTUFJSc-qV5P3yrZml0Jn052JNpjVfG1Cn0eDqcCcaHIDBX45wbsUf49lWtOF7HxbZvFxzAY4wVRqTg_eZ_-g13FMfRnFaGCld5EW6PUEuRRzTr45_QCwOdzL_H2vgj8_Om0u22pSWWHIpwyhjBAtD1qYuNvQ-rv_Os3yfAFCq5Kpp0zIg9-fMjb9MkJSyc33z0tz8emHXH3EsrT6A8qJr2E</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Tipper, E. T.</creator><creator>Gaillardet, J.</creator><creator>Galy, A.</creator><creator>Louvat, P.</creator><creator>Bickle, M. J.</creator><creator>Capmas, F.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7TG</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7TN</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7982-1159</orcidid><orcidid>https://orcid.org/0000-0003-1972-0633</orcidid></search><sort><creationdate>201009</creationdate><title>Calcium isotope ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes</title><author>Tipper, E. T. ; Gaillardet, J. ; Galy, A. ; Louvat, P. ; Bickle, M. J. ; Capmas, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5448-127f8618831092416a1335fc2d1bb67dc7b16c45050558dca9908b71139318773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biogeochemical cycles</topic><topic>Calcium</topic><topic>Climate change</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fractionation</topic><topic>Fresh water</topic><topic>Geochemistry</topic><topic>global budgets</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Isotope geochemistry</topic><topic>Isotope geochemistry. Geochronology</topic><topic>Isotopes</topic><topic>Limestone</topic><topic>Mineralogy</topic><topic>Oceans</topic><topic>Rivers</topic><topic>Sciences of the Universe</topic><topic>Seasonal variations</topic><topic>Silicates</topic><topic>Water geochemistry</topic><topic>weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tipper, E. T.</creatorcontrib><creatorcontrib>Gaillardet, J.</creatorcontrib><creatorcontrib>Galy, A.</creatorcontrib><creatorcontrib>Louvat, P.</creatorcontrib><creatorcontrib>Bickle, M. J.</creatorcontrib><creatorcontrib>Capmas, F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Oceanic Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tipper, E. T.</au><au>Gaillardet, J.</au><au>Galy, A.</au><au>Louvat, P.</au><au>Bickle, M. J.</au><au>Capmas, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium isotope ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes</atitle><jtitle>Global biogeochemical cycles</jtitle><addtitle>Global Biogeochem. Cycles</addtitle><date>2010-09</date><risdate>2010</risdate><volume>24</volume><issue>3</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><eissn>1944-8224</eissn><coden>GBCYEP</coden><abstract>The oceanic mass balance of calcium (Ca) is defined by a balance between the inputs (rivers and hydrothermal) and outputs (bulk carbonate) of Ca. Large rivers were analyzed for Ca isotope ratios (44Ca/42Ca, expressed as Ca) to investigate the source and cycling of riverine Ca, and to add an isotopic mass balance constraint to the oceanic budget of Ca. The new data account for approximately one‐third of the total Ca supplied to the oceans by rivers. Inter‐sample and seasonal variability was assessed by analyzing more than one sample for many rivers. The range in the Ca of large rivers at high water stand is extremely narrow at 0.27‰. Variations in Ca do not correlate with proxies for carbonate, silicate or evaporite derived Ca, and are more likely related either to inherent variability in the lithological sources of Ca or to process related fractionation. The spread in riverine Ca overlaps with the spread in marine limestone Ca consistent with most riverine Ca coming from the recycling of limestones. The Ca isotope composition of continental runoff has an average Ca value of 0.38 ± 0.04‰, identical to recent (5 M.yr) bulk carbonate ooze (0.33 ± 0.13‰, 2S.D.). Isotopic mass balance constrains that the input and output fluxes of Ca to and from the oceans, are balanced to within 15% over time‐scales similar to the residence time of Ca in the oceans (1 M.yr). A greater imbalance between the fluxes would result in a detectable difference between the Ca value of bulk carbonate and the riverine input at the current level of uncertainty. The input and output fluxes could be imbalanced over much shorter time‐scales (such as glacial‐interglacial cycles), in which case the ocean‐carbonate system will not yet have responded, because of the long residence time of Ca. The maximum current flux imbalance of 15% would be sufficient to account for the total variations in Ca concentration over the Tertiary. Such an interpretation is not unique, but is the simplest interpretation given the similarity between the input and output isotopic compositions, and rules out hypotheses of extreme imbalance in the recent global biogeochemical cycle of Ca.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GB003574</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7982-1159</orcidid><orcidid>https://orcid.org/0000-0003-1972-0633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2010-09, Vol.24 (3), p.np-n/a
issn 0886-6236
1944-9224
1944-8224
language eng
recordid cdi_hal_primary_oai_HAL_insu_03605292v1
source Wiley Online Library Free Content; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Biogeochemical cycles
Calcium
Climate change
Earth
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fractionation
Fresh water
Geochemistry
global budgets
Hydrology
Hydrology. Hydrogeology
Isotope geochemistry
Isotope geochemistry. Geochronology
Isotopes
Limestone
Mineralogy
Oceans
Rivers
Sciences of the Universe
Seasonal variations
Silicates
Water geochemistry
weathering
title Calcium isotope ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20isotope%20ratios%20in%20the%20world's%20largest%20rivers:%20A%20constraint%20on%20the%20maximum%20imbalance%20of%20oceanic%20calcium%20fluxes&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Tipper,%20E.%20T.&rft.date=2010-09&rft.volume=24&rft.issue=3&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0886-6236&rft.eissn=1944-9224&rft.coden=GBCYEP&rft_id=info:doi/10.1029/2009GB003574&rft_dat=%3Cproquest_hal_p%3E2554392451%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914318605&rft_id=info:pmid/&rfr_iscdi=true