Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography

Understanding the geotectonic evolution of the southeastern Tibetan plateau requires knowledge about the structure of the lithosphere. Using data from 77 broadband stations in SW China, we invert Rayleigh wave phase velocity dispersion curves from ambient noise interferometry (T = 10–40 s) and teles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Solid Earth 2010-12, Vol.115 (B12), p.n/a
Hauptverfasser: Yao, Huajian, van der Hilst, Robert D., Montagner, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B12
container_start_page
container_title Journal of Geophysical Research: Solid Earth
container_volume 115
creator Yao, Huajian
van der Hilst, Robert D.
Montagner, Jean-Paul
description Understanding the geotectonic evolution of the southeastern Tibetan plateau requires knowledge about the structure of the lithosphere. Using data from 77 broadband stations in SW China, we invert Rayleigh wave phase velocity dispersion curves from ambient noise interferometry (T = 10–40 s) and teleseismic surface waves (T = 20–150 s) for 3‐D heterogeneity and azimuthal anisotropy in the lithosphere to ∼150 km depth. Our surface wave array tomography reveals (1) deep crustal zones of anomalously low shear wave speed and (2) substantial variations with depth of the pattern of azimuthal anisotropy. Upper crustal azimuthal anisotropy reveals a curvilinear pattern around the eastern Himalayan syntaxis, with fast directions generally parallel to the main strike slip faults. The mantle pattern of azimuthal anisotropy is different from that in the crust and varies from north to south. The tomographically inferred 3‐D variation in azimuthal anisotropy helps constrain the source region of shear wave splitting. South of ∼26°N (off the high plateau) most of the observed splitting can be accounted for by upper mantle anisotropy, but for stations on the plateau proper (with thick crust) crustal anisotropy cannot be ignored. On long wavelengths, the pattern of azimuthal anisotropy in the crust differs from that in the mantle. This is easiest explained if deformation varies with depth. The deep crustal zones of low shear wave speed (and, presumably, mechanical strength) may represent loci of ductile deformation. But their lateral variation suggests that in SE Tibet (localized) crustal channel flow and motion along the major strike slip faults are both important.
doi_str_mv 10.1029/2009JB007142
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03605272v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643654111</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5379-4a4dbd695347a10e3408e2921aea857b879ce85e16507980398a6ea0c69c0aa83</originalsourceid><addsrcrecordid>eNp9kE9r20AQxUVpoSbNrR9AUHopVTv7X3tMQmrHmLS0Kbl1GcujaFPZq-7KSfTtK6NgeurAMDD83uPxsuwtg08MuP3MAezyHMAwyV9kM86ULjgH_jKbAZNlAZyb19lpSvcwjlRaAptlvxbUUwx3tCPfDznuNuP6FPoYuiEPdd43lLe-b0LqGop0eP24zG_8mvq8jmGbp32ssaL8ER8oxxhxyPuwDXcRu2Z4k72qsU10-nxPsp9fLm8uFsXq6_zq4mxVoBLGFhLlZr3RVglpkAEJCSVxyxkSlsqsS2MrKhUxrcDYEoQtURNCpW0FiKU4yT5Mvg22rot-i3FwAb1bnK2c36W9A6FBccMf2Ai_m-Auhj97Sr27D_u4G_M5NpY4diaYHamPE1XFkFKk-ujLwB0ad_82PuLvn00xVdjWEXeVT0cNFyUXhh04MXGPvqXhv55uOf9-zrTUhzDFpPKpp6ejCuNvp40wyt1ez9235a00Sl07Lf4CYEybww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009202319</pqid></control><display><type>article</type><title>Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Yao, Huajian ; van der Hilst, Robert D. ; Montagner, Jean-Paul</creator><creatorcontrib>Yao, Huajian ; van der Hilst, Robert D. ; Montagner, Jean-Paul</creatorcontrib><description>Understanding the geotectonic evolution of the southeastern Tibetan plateau requires knowledge about the structure of the lithosphere. Using data from 77 broadband stations in SW China, we invert Rayleigh wave phase velocity dispersion curves from ambient noise interferometry (T = 10–40 s) and teleseismic surface waves (T = 20–150 s) for 3‐D heterogeneity and azimuthal anisotropy in the lithosphere to ∼150 km depth. Our surface wave array tomography reveals (1) deep crustal zones of anomalously low shear wave speed and (2) substantial variations with depth of the pattern of azimuthal anisotropy. Upper crustal azimuthal anisotropy reveals a curvilinear pattern around the eastern Himalayan syntaxis, with fast directions generally parallel to the main strike slip faults. The mantle pattern of azimuthal anisotropy is different from that in the crust and varies from north to south. The tomographically inferred 3‐D variation in azimuthal anisotropy helps constrain the source region of shear wave splitting. South of ∼26°N (off the high plateau) most of the observed splitting can be accounted for by upper mantle anisotropy, but for stations on the plateau proper (with thick crust) crustal anisotropy cannot be ignored. On long wavelengths, the pattern of azimuthal anisotropy in the crust differs from that in the mantle. This is easiest explained if deformation varies with depth. The deep crustal zones of low shear wave speed (and, presumably, mechanical strength) may represent loci of ductile deformation. But their lateral variation suggests that in SE Tibet (localized) crustal channel flow and motion along the major strike slip faults are both important.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2009JB007142</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Channel flow ; Deformation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geodetics ; Geophysics ; Heterogeneity ; Interferometry ; Lithosphere ; Rock deformation ; Sciences of the Universe ; SE Tibet ; Seismology ; Surface waves ; tomography ; Upper mantle ; Wave velocity ; Wavelengths</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2010-12, Vol.115 (B12), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5379-4a4dbd695347a10e3408e2921aea857b879ce85e16507980398a6ea0c69c0aa83</citedby><cites>FETCH-LOGICAL-a5379-4a4dbd695347a10e3408e2921aea857b879ce85e16507980398a6ea0c69c0aa83</cites><orcidid>0000-0003-1517-9042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JB007142$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JB007142$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23823712$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-03605272$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Huajian</creatorcontrib><creatorcontrib>van der Hilst, Robert D.</creatorcontrib><creatorcontrib>Montagner, Jean-Paul</creatorcontrib><title>Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Understanding the geotectonic evolution of the southeastern Tibetan plateau requires knowledge about the structure of the lithosphere. Using data from 77 broadband stations in SW China, we invert Rayleigh wave phase velocity dispersion curves from ambient noise interferometry (T = 10–40 s) and teleseismic surface waves (T = 20–150 s) for 3‐D heterogeneity and azimuthal anisotropy in the lithosphere to ∼150 km depth. Our surface wave array tomography reveals (1) deep crustal zones of anomalously low shear wave speed and (2) substantial variations with depth of the pattern of azimuthal anisotropy. Upper crustal azimuthal anisotropy reveals a curvilinear pattern around the eastern Himalayan syntaxis, with fast directions generally parallel to the main strike slip faults. The mantle pattern of azimuthal anisotropy is different from that in the crust and varies from north to south. The tomographically inferred 3‐D variation in azimuthal anisotropy helps constrain the source region of shear wave splitting. South of ∼26°N (off the high plateau) most of the observed splitting can be accounted for by upper mantle anisotropy, but for stations on the plateau proper (with thick crust) crustal anisotropy cannot be ignored. On long wavelengths, the pattern of azimuthal anisotropy in the crust differs from that in the mantle. This is easiest explained if deformation varies with depth. The deep crustal zones of low shear wave speed (and, presumably, mechanical strength) may represent loci of ductile deformation. But their lateral variation suggests that in SE Tibet (localized) crustal channel flow and motion along the major strike slip faults are both important.</description><subject>Anisotropy</subject><subject>Channel flow</subject><subject>Deformation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geodetics</subject><subject>Geophysics</subject><subject>Heterogeneity</subject><subject>Interferometry</subject><subject>Lithosphere</subject><subject>Rock deformation</subject><subject>Sciences of the Universe</subject><subject>SE Tibet</subject><subject>Seismology</subject><subject>Surface waves</subject><subject>tomography</subject><subject>Upper mantle</subject><subject>Wave velocity</subject><subject>Wavelengths</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9r20AQxUVpoSbNrR9AUHopVTv7X3tMQmrHmLS0Kbl1GcujaFPZq-7KSfTtK6NgeurAMDD83uPxsuwtg08MuP3MAezyHMAwyV9kM86ULjgH_jKbAZNlAZyb19lpSvcwjlRaAptlvxbUUwx3tCPfDznuNuP6FPoYuiEPdd43lLe-b0LqGop0eP24zG_8mvq8jmGbp32ssaL8ER8oxxhxyPuwDXcRu2Z4k72qsU10-nxPsp9fLm8uFsXq6_zq4mxVoBLGFhLlZr3RVglpkAEJCSVxyxkSlsqsS2MrKhUxrcDYEoQtURNCpW0FiKU4yT5Mvg22rot-i3FwAb1bnK2c36W9A6FBccMf2Ai_m-Auhj97Sr27D_u4G_M5NpY4diaYHamPE1XFkFKk-ujLwB0ad_82PuLvn00xVdjWEXeVT0cNFyUXhh04MXGPvqXhv55uOf9-zrTUhzDFpPKpp6ejCuNvp40wyt1ez9235a00Sl07Lf4CYEybww</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Yao, Huajian</creator><creator>van der Hilst, Robert D.</creator><creator>Montagner, Jean-Paul</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1517-9042</orcidid></search><sort><creationdate>201012</creationdate><title>Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography</title><author>Yao, Huajian ; van der Hilst, Robert D. ; Montagner, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5379-4a4dbd695347a10e3408e2921aea857b879ce85e16507980398a6ea0c69c0aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropy</topic><topic>Channel flow</topic><topic>Deformation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geodetics</topic><topic>Geophysics</topic><topic>Heterogeneity</topic><topic>Interferometry</topic><topic>Lithosphere</topic><topic>Rock deformation</topic><topic>Sciences of the Universe</topic><topic>SE Tibet</topic><topic>Seismology</topic><topic>Surface waves</topic><topic>tomography</topic><topic>Upper mantle</topic><topic>Wave velocity</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Huajian</creatorcontrib><creatorcontrib>van der Hilst, Robert D.</creatorcontrib><creatorcontrib>Montagner, Jean-Paul</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Huajian</au><au>van der Hilst, Robert D.</au><au>Montagner, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-12</date><risdate>2010</risdate><volume>115</volume><issue>B12</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>Understanding the geotectonic evolution of the southeastern Tibetan plateau requires knowledge about the structure of the lithosphere. Using data from 77 broadband stations in SW China, we invert Rayleigh wave phase velocity dispersion curves from ambient noise interferometry (T = 10–40 s) and teleseismic surface waves (T = 20–150 s) for 3‐D heterogeneity and azimuthal anisotropy in the lithosphere to ∼150 km depth. Our surface wave array tomography reveals (1) deep crustal zones of anomalously low shear wave speed and (2) substantial variations with depth of the pattern of azimuthal anisotropy. Upper crustal azimuthal anisotropy reveals a curvilinear pattern around the eastern Himalayan syntaxis, with fast directions generally parallel to the main strike slip faults. The mantle pattern of azimuthal anisotropy is different from that in the crust and varies from north to south. The tomographically inferred 3‐D variation in azimuthal anisotropy helps constrain the source region of shear wave splitting. South of ∼26°N (off the high plateau) most of the observed splitting can be accounted for by upper mantle anisotropy, but for stations on the plateau proper (with thick crust) crustal anisotropy cannot be ignored. On long wavelengths, the pattern of azimuthal anisotropy in the crust differs from that in the mantle. This is easiest explained if deformation varies with depth. The deep crustal zones of low shear wave speed (and, presumably, mechanical strength) may represent loci of ductile deformation. But their lateral variation suggests that in SE Tibet (localized) crustal channel flow and motion along the major strike slip faults are both important.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JB007142</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1517-9042</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Solid Earth, 2010-12, Vol.115 (B12), p.n/a
issn 0148-0227
2169-9313
2156-2202
2169-9356
language eng
recordid cdi_hal_primary_oai_HAL_insu_03605272v1
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Anisotropy
Channel flow
Deformation
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geodetics
Geophysics
Heterogeneity
Interferometry
Lithosphere
Rock deformation
Sciences of the Universe
SE Tibet
Seismology
Surface waves
tomography
Upper mantle
Wave velocity
Wavelengths
title Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneity%20and%20anisotropy%20of%20the%20lithosphere%20of%20SE%20Tibet%20from%20surface%20wave%20array%20tomography&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Yao,%20Huajian&rft.date=2010-12&rft.volume=115&rft.issue=B12&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JB007142&rft_dat=%3Cproquest_hal_p%3E2643654111%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009202319&rft_id=info:pmid/&rfr_iscdi=true