On the kinematics and dynamics of crystal‐rich systems
Partially molten rocks, often called a mush, are examples of a hydrogranular mixture where the dynamics are controlled by both fluid and crystal‐crystal interactions. An obstacle to progress in understanding high‐temperature hydrogranular systems has been the lack of adequate levels of description o...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2017-08, Vol.122 (8), p.6131-6159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6159 |
---|---|
container_issue | 8 |
container_start_page | 6131 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 122 |
creator | Bergantz, George W. Schleicher, Jillian M. Burgisser, Alain |
description | Partially molten rocks, often called a mush, are examples of a hydrogranular mixture where the dynamics are controlled by both fluid and crystal‐crystal interactions. An obstacle to progress in understanding high‐temperature hydrogranular systems has been the lack of adequate levels of description of microphysical processes. Here we rationalize the hydrogranular kinematic and dynamic states by applying the concept of particle (crystal) force chains. We exemplify this with discrete‐element computational fluid dynamic simulations of the intrusion of a basaltic melt into an olivine‐basalt mush, where crystal‐scale force chains, crystal transport, and melt mixing are resolved. To describe the microscale kinematics of the system, we introduce the coordination number and the fabric tensors of particle contacts and forces. We quantify the changing contact and force fabric anisotropy, coaxiality, and the connectedness of the mush, under dynamic conditions. To describe the dynamics, particle and fluid characteristic response times are derived. These are used to define local and bulk Stokes numbers, and viscous and inertia numbers, which quantify the multiphase coupling under crystal‐rich conditions. We employ the Sommerfeld number, which describes the importance of crystal‐melt lubrication, with a viscous number to illustrate the dynamic regimes of crystal‐rich magmas. We show that the notion of mechanical “lock up” is not uniquely identified with a particular crystal volume fraction and that distinct mechanical behaviors can emerge simultaneously within a crystal‐rich system. We also posit that this framework describes magmatic fabrics and processes which “unlock” a crystal mush prior to eruption or mixing.
Key Points
The physics of crystal‐rich systems is rationalized by the introduction of hydrogranular mechanics based on the occurrence of force chains
A discrete element model of magma dynamics is used to exemplify the contact and force microstructure using anisotropy tensors
The Sommerfeld and viscous numbers are introduced to discriminate dynamic regimes and modes of mechanical jamming |
doi_str_mv | 10.1002/2017JB014218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03596058v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940629986</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4465-3ffe09c5de0806d0999920360b655736a52814a7e5fc5393b2ca0b2c4992ce893</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWGpvPsCCN3F1kmzS5NgWbS2Fgug5pNksu3X_1GSr7M1H8Bl9ElNWiie_w8x8w4-PYRC6xHCLAcgdATxeTgEnBIsTNCCYy1hSxk-PM6bnaOT9FoJEWOFkgMS6jtrcRq9FbSvdFsZHuk6jtKt1dTBNFhnX-VaX359frjB55IOzlb9AZ5kuvR399iF6ebh_ni3i1Xr-OJusYp0knMU0yyxIw1ILAngKMogA5bDhjI0p14wInOixZZlhVNINMRpCSQJmrJB0iK773FyXaueKSrtONbpQi8lKFbXfK6BMcmDiHQf4qod3rnnbW9-qbbN3dbhPYZkAJ1IKHqibnjKu8d7Z7JiLQR1-qf7-MuC0xz-K0nb_smo5f5oyQjCjPyHNcq4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940629986</pqid></control><display><type>article</type><title>On the kinematics and dynamics of crystal‐rich systems</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Bergantz, George W. ; Schleicher, Jillian M. ; Burgisser, Alain</creator><creatorcontrib>Bergantz, George W. ; Schleicher, Jillian M. ; Burgisser, Alain</creatorcontrib><description>Partially molten rocks, often called a mush, are examples of a hydrogranular mixture where the dynamics are controlled by both fluid and crystal‐crystal interactions. An obstacle to progress in understanding high‐temperature hydrogranular systems has been the lack of adequate levels of description of microphysical processes. Here we rationalize the hydrogranular kinematic and dynamic states by applying the concept of particle (crystal) force chains. We exemplify this with discrete‐element computational fluid dynamic simulations of the intrusion of a basaltic melt into an olivine‐basalt mush, where crystal‐scale force chains, crystal transport, and melt mixing are resolved. To describe the microscale kinematics of the system, we introduce the coordination number and the fabric tensors of particle contacts and forces. We quantify the changing contact and force fabric anisotropy, coaxiality, and the connectedness of the mush, under dynamic conditions. To describe the dynamics, particle and fluid characteristic response times are derived. These are used to define local and bulk Stokes numbers, and viscous and inertia numbers, which quantify the multiphase coupling under crystal‐rich conditions. We employ the Sommerfeld number, which describes the importance of crystal‐melt lubrication, with a viscous number to illustrate the dynamic regimes of crystal‐rich magmas. We show that the notion of mechanical “lock up” is not uniquely identified with a particular crystal volume fraction and that distinct mechanical behaviors can emerge simultaneously within a crystal‐rich system. We also posit that this framework describes magmatic fabrics and processes which “unlock” a crystal mush prior to eruption or mixing.
Key Points
The physics of crystal‐rich systems is rationalized by the introduction of hydrogranular mechanics based on the occurrence of force chains
A discrete element model of magma dynamics is used to exemplify the contact and force microstructure using anisotropy tensors
The Sommerfeld and viscous numbers are introduced to discriminate dynamic regimes and modes of mechanical jamming</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2017JB014218</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Basalt ; Chains ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Concentration (composition) ; crystal mush ; Crystals ; discrete element ; Dynamics ; Fabrics ; Forces (mechanics) ; Frameworks ; Geophysics ; granular physics ; High temperature ; hydrogranular ; Inertia ; Interactions ; Intrusion ; Jamming ; Kinematics ; Lava ; Lubrication ; Magma ; magma dynamics ; Mathematical analysis ; Mechanical properties ; Mechanics ; Microstructure ; Modes ; multiphase flow ; Olivine ; Physics ; Sciences of the Universe ; Stokes law (fluid mechanics) ; Tensors</subject><ispartof>Journal of geophysical research. Solid earth, 2017-08, Vol.122 (8), p.6131-6159</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4465-3ffe09c5de0806d0999920360b655736a52814a7e5fc5393b2ca0b2c4992ce893</citedby><cites>FETCH-LOGICAL-a4465-3ffe09c5de0806d0999920360b655736a52814a7e5fc5393b2ca0b2c4992ce893</cites><orcidid>0000-0002-7025-401X ; 0000-0002-2077-5589 ; 0000-0002-9263-622X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JB014218$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JB014218$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,1430,27907,27908,45557,45558,46392,46816</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03596058$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergantz, George W.</creatorcontrib><creatorcontrib>Schleicher, Jillian M.</creatorcontrib><creatorcontrib>Burgisser, Alain</creatorcontrib><title>On the kinematics and dynamics of crystal‐rich systems</title><title>Journal of geophysical research. Solid earth</title><description>Partially molten rocks, often called a mush, are examples of a hydrogranular mixture where the dynamics are controlled by both fluid and crystal‐crystal interactions. An obstacle to progress in understanding high‐temperature hydrogranular systems has been the lack of adequate levels of description of microphysical processes. Here we rationalize the hydrogranular kinematic and dynamic states by applying the concept of particle (crystal) force chains. We exemplify this with discrete‐element computational fluid dynamic simulations of the intrusion of a basaltic melt into an olivine‐basalt mush, where crystal‐scale force chains, crystal transport, and melt mixing are resolved. To describe the microscale kinematics of the system, we introduce the coordination number and the fabric tensors of particle contacts and forces. We quantify the changing contact and force fabric anisotropy, coaxiality, and the connectedness of the mush, under dynamic conditions. To describe the dynamics, particle and fluid characteristic response times are derived. These are used to define local and bulk Stokes numbers, and viscous and inertia numbers, which quantify the multiphase coupling under crystal‐rich conditions. We employ the Sommerfeld number, which describes the importance of crystal‐melt lubrication, with a viscous number to illustrate the dynamic regimes of crystal‐rich magmas. We show that the notion of mechanical “lock up” is not uniquely identified with a particular crystal volume fraction and that distinct mechanical behaviors can emerge simultaneously within a crystal‐rich system. We also posit that this framework describes magmatic fabrics and processes which “unlock” a crystal mush prior to eruption or mixing.
Key Points
The physics of crystal‐rich systems is rationalized by the introduction of hydrogranular mechanics based on the occurrence of force chains
A discrete element model of magma dynamics is used to exemplify the contact and force microstructure using anisotropy tensors
The Sommerfeld and viscous numbers are introduced to discriminate dynamic regimes and modes of mechanical jamming</description><subject>Anisotropy</subject><subject>Basalt</subject><subject>Chains</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Concentration (composition)</subject><subject>crystal mush</subject><subject>Crystals</subject><subject>discrete element</subject><subject>Dynamics</subject><subject>Fabrics</subject><subject>Forces (mechanics)</subject><subject>Frameworks</subject><subject>Geophysics</subject><subject>granular physics</subject><subject>High temperature</subject><subject>hydrogranular</subject><subject>Inertia</subject><subject>Interactions</subject><subject>Intrusion</subject><subject>Jamming</subject><subject>Kinematics</subject><subject>Lava</subject><subject>Lubrication</subject><subject>Magma</subject><subject>magma dynamics</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Microstructure</subject><subject>Modes</subject><subject>multiphase flow</subject><subject>Olivine</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Stokes law (fluid mechanics)</subject><subject>Tensors</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWGpvPsCCN3F1kmzS5NgWbS2Fgug5pNksu3X_1GSr7M1H8Bl9ElNWiie_w8x8w4-PYRC6xHCLAcgdATxeTgEnBIsTNCCYy1hSxk-PM6bnaOT9FoJEWOFkgMS6jtrcRq9FbSvdFsZHuk6jtKt1dTBNFhnX-VaX359frjB55IOzlb9AZ5kuvR399iF6ebh_ni3i1Xr-OJusYp0knMU0yyxIw1ILAngKMogA5bDhjI0p14wInOixZZlhVNINMRpCSQJmrJB0iK773FyXaueKSrtONbpQi8lKFbXfK6BMcmDiHQf4qod3rnnbW9-qbbN3dbhPYZkAJ1IKHqibnjKu8d7Z7JiLQR1-qf7-MuC0xz-K0nb_smo5f5oyQjCjPyHNcq4</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Bergantz, George W.</creator><creator>Schleicher, Jillian M.</creator><creator>Burgisser, Alain</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7025-401X</orcidid><orcidid>https://orcid.org/0000-0002-2077-5589</orcidid><orcidid>https://orcid.org/0000-0002-9263-622X</orcidid></search><sort><creationdate>201708</creationdate><title>On the kinematics and dynamics of crystal‐rich systems</title><author>Bergantz, George W. ; Schleicher, Jillian M. ; Burgisser, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4465-3ffe09c5de0806d0999920360b655736a52814a7e5fc5393b2ca0b2c4992ce893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Basalt</topic><topic>Chains</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Concentration (composition)</topic><topic>crystal mush</topic><topic>Crystals</topic><topic>discrete element</topic><topic>Dynamics</topic><topic>Fabrics</topic><topic>Forces (mechanics)</topic><topic>Frameworks</topic><topic>Geophysics</topic><topic>granular physics</topic><topic>High temperature</topic><topic>hydrogranular</topic><topic>Inertia</topic><topic>Interactions</topic><topic>Intrusion</topic><topic>Jamming</topic><topic>Kinematics</topic><topic>Lava</topic><topic>Lubrication</topic><topic>Magma</topic><topic>magma dynamics</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Microstructure</topic><topic>Modes</topic><topic>multiphase flow</topic><topic>Olivine</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Stokes law (fluid mechanics)</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergantz, George W.</creatorcontrib><creatorcontrib>Schleicher, Jillian M.</creatorcontrib><creatorcontrib>Burgisser, Alain</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergantz, George W.</au><au>Schleicher, Jillian M.</au><au>Burgisser, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the kinematics and dynamics of crystal‐rich systems</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2017-08</date><risdate>2017</risdate><volume>122</volume><issue>8</issue><spage>6131</spage><epage>6159</epage><pages>6131-6159</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Partially molten rocks, often called a mush, are examples of a hydrogranular mixture where the dynamics are controlled by both fluid and crystal‐crystal interactions. An obstacle to progress in understanding high‐temperature hydrogranular systems has been the lack of adequate levels of description of microphysical processes. Here we rationalize the hydrogranular kinematic and dynamic states by applying the concept of particle (crystal) force chains. We exemplify this with discrete‐element computational fluid dynamic simulations of the intrusion of a basaltic melt into an olivine‐basalt mush, where crystal‐scale force chains, crystal transport, and melt mixing are resolved. To describe the microscale kinematics of the system, we introduce the coordination number and the fabric tensors of particle contacts and forces. We quantify the changing contact and force fabric anisotropy, coaxiality, and the connectedness of the mush, under dynamic conditions. To describe the dynamics, particle and fluid characteristic response times are derived. These are used to define local and bulk Stokes numbers, and viscous and inertia numbers, which quantify the multiphase coupling under crystal‐rich conditions. We employ the Sommerfeld number, which describes the importance of crystal‐melt lubrication, with a viscous number to illustrate the dynamic regimes of crystal‐rich magmas. We show that the notion of mechanical “lock up” is not uniquely identified with a particular crystal volume fraction and that distinct mechanical behaviors can emerge simultaneously within a crystal‐rich system. We also posit that this framework describes magmatic fabrics and processes which “unlock” a crystal mush prior to eruption or mixing.
Key Points
The physics of crystal‐rich systems is rationalized by the introduction of hydrogranular mechanics based on the occurrence of force chains
A discrete element model of magma dynamics is used to exemplify the contact and force microstructure using anisotropy tensors
The Sommerfeld and viscous numbers are introduced to discriminate dynamic regimes and modes of mechanical jamming</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JB014218</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-7025-401X</orcidid><orcidid>https://orcid.org/0000-0002-2077-5589</orcidid><orcidid>https://orcid.org/0000-0002-9263-622X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2017-08, Vol.122 (8), p.6131-6159 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03596058v1 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Anisotropy Basalt Chains Computational fluid dynamics Computer applications Computer simulation Concentration (composition) crystal mush Crystals discrete element Dynamics Fabrics Forces (mechanics) Frameworks Geophysics granular physics High temperature hydrogranular Inertia Interactions Intrusion Jamming Kinematics Lava Lubrication Magma magma dynamics Mathematical analysis Mechanical properties Mechanics Microstructure Modes multiphase flow Olivine Physics Sciences of the Universe Stokes law (fluid mechanics) Tensors |
title | On the kinematics and dynamics of crystal‐rich systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20kinematics%20and%20dynamics%20of%20crystal%E2%80%90rich%20systems&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Bergantz,%20George%20W.&rft.date=2017-08&rft.volume=122&rft.issue=8&rft.spage=6131&rft.epage=6159&rft.pages=6131-6159&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2017JB014218&rft_dat=%3Cproquest_hal_p%3E1940629986%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940629986&rft_id=info:pmid/&rfr_iscdi=true |