Interaction of microseisms with crustal heterogeneity: A case study from the San Jacinto fault zone area
We perform a multicomponent analysis to evaluate the validity and limits of noise imaging in the San Jacinto fault zone (SJFZ) area. Estimates of noise propagation and scattering length scales in the area are combined with a noise correlation‐based analysis of variability of noise constituents, exci...
Gespeichert in:
Veröffentlicht in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2013-07, Vol.14 (7), p.2182-2197 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2197 |
---|---|
container_issue | 7 |
container_start_page | 2182 |
container_title | Geochemistry, geophysics, geosystems : G3 |
container_volume | 14 |
creator | Hillers, G. Ben-Zion, Y. Landès, M. Campillo, M. |
description | We perform a multicomponent analysis to evaluate the validity and limits of noise imaging in the San Jacinto fault zone (SJFZ) area. Estimates of noise propagation and scattering length scales in the area are combined with a noise correlation‐based analysis of variability of noise constituents, excitation regions, and propagation patterns. We evaluate the quality of correlation‐phase and ‐amplitude imaging of tectonic features in the context of observed noise properties. Statistical properties of a regional high‐resolution 3‐D velocity model indicate that propagation of double‐frequency microseism Rayleigh waves is sensitive to medium heterogeneity in the southern California plate boundary area. The analysis of noise correlation functions constructed from records of a regional seismic network suggests stable excitation of microseisms along the southern California coastline. The proximity to the source region together with randomization properties of the heterogeneous medium govern the scattered yet anisotropic character of the wave field. Insignificant travel time errors resulting from the associated imperfect reconstruction of interstation Green's function estimates allow the resolution of a velocity contrast across the SJFZ from noise correlations. However, attenuation estimates are biased by the anisotropic propagation directions. The interaction of the ambient surface wave field with medium heterogeneity facilitates imaging of the velocity structure, but the inversion of the amplitude pattern is limited since it is dominated by wave field instead of medium properties.
Key Points
Microseism propagation interacts with the heterogeneous medium in the SJFZ area
Together with the nearby source this yields a scattered anisotropic wave field
Phase but not amplitude information can be inverted for physical properties |
doi_str_mv | 10.1002/ggge.20140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03581782v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642283785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4990-f4729f9801f71f3d4fba183a6e54c66883710735706b15493696399bbb5f13223</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBuAIgUQpbHgCS2wQUorvF3ajqmRaRiDRokrdWE5qT1wSu9gOZXh6Mh0YIRZ0ZS--__gcn6p6ieARghC_Xa_X9ghDROGj6gAxzGoMsXj81_1p9SznGzgTxuRB1Z-GYpPpio8BRAdG36WYrc9jBne-9KBLUy5mAL2dXVzbYH3ZvAML0JlsQS7T9Qa4FEdQegvOTQBnpvOhRODMNBTwMwYLTLLmefXEmSHbF7_Pw-rL-5OL42W9-tScHi9WtaFKwdpRgZVTEiInkCPX1LUGSWK4ZbTjXEoiEBSECchbxKgiXHGiVNu2zCGCMTms3uzq9mbQt8mPJm10NF4vFyvtQ540JEwiIfF3NOPXO3yb4rfJ5qJHnzs7DCbYOGWNOMV4flKyhynDlCKEIZ_pq3_oTZxSmKe-LwgRIfMI-0a3H56TdftuEdTbZertMvX9MmeMdvjOD3bzH6mbpjn5k6l3GZ-L_bHPmPRVc0EE05cfG31x9Vl-OFsq3ZBfZ8utkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642013307</pqid></control><display><type>article</type><title>Interaction of microseisms with crustal heterogeneity: A case study from the San Jacinto fault zone area</title><source>Wiley-Blackwell Open Access Titles</source><creator>Hillers, G. ; Ben-Zion, Y. ; Landès, M. ; Campillo, M.</creator><creatorcontrib>Hillers, G. ; Ben-Zion, Y. ; Landès, M. ; Campillo, M.</creatorcontrib><description>We perform a multicomponent analysis to evaluate the validity and limits of noise imaging in the San Jacinto fault zone (SJFZ) area. Estimates of noise propagation and scattering length scales in the area are combined with a noise correlation‐based analysis of variability of noise constituents, excitation regions, and propagation patterns. We evaluate the quality of correlation‐phase and ‐amplitude imaging of tectonic features in the context of observed noise properties. Statistical properties of a regional high‐resolution 3‐D velocity model indicate that propagation of double‐frequency microseism Rayleigh waves is sensitive to medium heterogeneity in the southern California plate boundary area. The analysis of noise correlation functions constructed from records of a regional seismic network suggests stable excitation of microseisms along the southern California coastline. The proximity to the source region together with randomization properties of the heterogeneous medium govern the scattered yet anisotropic character of the wave field. Insignificant travel time errors resulting from the associated imperfect reconstruction of interstation Green's function estimates allow the resolution of a velocity contrast across the SJFZ from noise correlations. However, attenuation estimates are biased by the anisotropic propagation directions. The interaction of the ambient surface wave field with medium heterogeneity facilitates imaging of the velocity structure, but the inversion of the amplitude pattern is limited since it is dominated by wave field instead of medium properties.
Key Points
Microseism propagation interacts with the heterogeneous medium in the SJFZ area
Together with the nearby source this yields a scattered anisotropic wave field
Phase but not amplitude information can be inverted for physical properties</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1002/ggge.20140</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; crustal scattering ; Estimates ; Faults ; Heterogeneity ; Imaging ; mean free path ; microseism wave field ; Microseisms ; Noise ; noise correlations ; noise-based imaging ; Physical properties ; Propagation ; Regional ; Sciences of the Universe ; Surface waves ; Travel time</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2013-07, Vol.14 (7), p.2182-2197</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4990-f4729f9801f71f3d4fba183a6e54c66883710735706b15493696399bbb5f13223</citedby><cites>FETCH-LOGICAL-a4990-f4729f9801f71f3d4fba183a6e54c66883710735706b15493696399bbb5f13223</cites><orcidid>0000-0001-6971-4499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fggge.20140$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fggge.20140$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Fggge.20140$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-03581782$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hillers, G.</creatorcontrib><creatorcontrib>Ben-Zion, Y.</creatorcontrib><creatorcontrib>Landès, M.</creatorcontrib><creatorcontrib>Campillo, M.</creatorcontrib><title>Interaction of microseisms with crustal heterogeneity: A case study from the San Jacinto fault zone area</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>We perform a multicomponent analysis to evaluate the validity and limits of noise imaging in the San Jacinto fault zone (SJFZ) area. Estimates of noise propagation and scattering length scales in the area are combined with a noise correlation‐based analysis of variability of noise constituents, excitation regions, and propagation patterns. We evaluate the quality of correlation‐phase and ‐amplitude imaging of tectonic features in the context of observed noise properties. Statistical properties of a regional high‐resolution 3‐D velocity model indicate that propagation of double‐frequency microseism Rayleigh waves is sensitive to medium heterogeneity in the southern California plate boundary area. The analysis of noise correlation functions constructed from records of a regional seismic network suggests stable excitation of microseisms along the southern California coastline. The proximity to the source region together with randomization properties of the heterogeneous medium govern the scattered yet anisotropic character of the wave field. Insignificant travel time errors resulting from the associated imperfect reconstruction of interstation Green's function estimates allow the resolution of a velocity contrast across the SJFZ from noise correlations. However, attenuation estimates are biased by the anisotropic propagation directions. The interaction of the ambient surface wave field with medium heterogeneity facilitates imaging of the velocity structure, but the inversion of the amplitude pattern is limited since it is dominated by wave field instead of medium properties.
Key Points
Microseism propagation interacts with the heterogeneous medium in the SJFZ area
Together with the nearby source this yields a scattered anisotropic wave field
Phase but not amplitude information can be inverted for physical properties</description><subject>Anisotropy</subject><subject>crustal scattering</subject><subject>Estimates</subject><subject>Faults</subject><subject>Heterogeneity</subject><subject>Imaging</subject><subject>mean free path</subject><subject>microseism wave field</subject><subject>Microseisms</subject><subject>Noise</subject><subject>noise correlations</subject><subject>noise-based imaging</subject><subject>Physical properties</subject><subject>Propagation</subject><subject>Regional</subject><subject>Sciences of the Universe</subject><subject>Surface waves</subject><subject>Travel time</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0ctu1DAUBuAIgUQpbHgCS2wQUorvF3ajqmRaRiDRokrdWE5qT1wSu9gOZXh6Mh0YIRZ0ZS--__gcn6p6ieARghC_Xa_X9ghDROGj6gAxzGoMsXj81_1p9SznGzgTxuRB1Z-GYpPpio8BRAdG36WYrc9jBne-9KBLUy5mAL2dXVzbYH3ZvAML0JlsQS7T9Qa4FEdQegvOTQBnpvOhRODMNBTwMwYLTLLmefXEmSHbF7_Pw-rL-5OL42W9-tScHi9WtaFKwdpRgZVTEiInkCPX1LUGSWK4ZbTjXEoiEBSECchbxKgiXHGiVNu2zCGCMTms3uzq9mbQt8mPJm10NF4vFyvtQ540JEwiIfF3NOPXO3yb4rfJ5qJHnzs7DCbYOGWNOMV4flKyhynDlCKEIZ_pq3_oTZxSmKe-LwgRIfMI-0a3H56TdftuEdTbZertMvX9MmeMdvjOD3bzH6mbpjn5k6l3GZ-L_bHPmPRVc0EE05cfG31x9Vl-OFsq3ZBfZ8utkg</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Hillers, G.</creator><creator>Ben-Zion, Y.</creator><creator>Landès, M.</creator><creator>Campillo, M.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><general>AGU and the Geochemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6971-4499</orcidid></search><sort><creationdate>201307</creationdate><title>Interaction of microseisms with crustal heterogeneity: A case study from the San Jacinto fault zone area</title><author>Hillers, G. ; Ben-Zion, Y. ; Landès, M. ; Campillo, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4990-f4729f9801f71f3d4fba183a6e54c66883710735706b15493696399bbb5f13223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>crustal scattering</topic><topic>Estimates</topic><topic>Faults</topic><topic>Heterogeneity</topic><topic>Imaging</topic><topic>mean free path</topic><topic>microseism wave field</topic><topic>Microseisms</topic><topic>Noise</topic><topic>noise correlations</topic><topic>noise-based imaging</topic><topic>Physical properties</topic><topic>Propagation</topic><topic>Regional</topic><topic>Sciences of the Universe</topic><topic>Surface waves</topic><topic>Travel time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillers, G.</creatorcontrib><creatorcontrib>Ben-Zion, Y.</creatorcontrib><creatorcontrib>Landès, M.</creatorcontrib><creatorcontrib>Campillo, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hillers, G.</au><au>Ben-Zion, Y.</au><au>Landès, M.</au><au>Campillo, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of microseisms with crustal heterogeneity: A case study from the San Jacinto fault zone area</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2013-07</date><risdate>2013</risdate><volume>14</volume><issue>7</issue><spage>2182</spage><epage>2197</epage><pages>2182-2197</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>We perform a multicomponent analysis to evaluate the validity and limits of noise imaging in the San Jacinto fault zone (SJFZ) area. Estimates of noise propagation and scattering length scales in the area are combined with a noise correlation‐based analysis of variability of noise constituents, excitation regions, and propagation patterns. We evaluate the quality of correlation‐phase and ‐amplitude imaging of tectonic features in the context of observed noise properties. Statistical properties of a regional high‐resolution 3‐D velocity model indicate that propagation of double‐frequency microseism Rayleigh waves is sensitive to medium heterogeneity in the southern California plate boundary area. The analysis of noise correlation functions constructed from records of a regional seismic network suggests stable excitation of microseisms along the southern California coastline. The proximity to the source region together with randomization properties of the heterogeneous medium govern the scattered yet anisotropic character of the wave field. Insignificant travel time errors resulting from the associated imperfect reconstruction of interstation Green's function estimates allow the resolution of a velocity contrast across the SJFZ from noise correlations. However, attenuation estimates are biased by the anisotropic propagation directions. The interaction of the ambient surface wave field with medium heterogeneity facilitates imaging of the velocity structure, but the inversion of the amplitude pattern is limited since it is dominated by wave field instead of medium properties.
Key Points
Microseism propagation interacts with the heterogeneous medium in the SJFZ area
Together with the nearby source this yields a scattered anisotropic wave field
Phase but not amplitude information can be inverted for physical properties</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/ggge.20140</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6971-4499</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1525-2027 |
ispartof | Geochemistry, geophysics, geosystems : G3, 2013-07, Vol.14 (7), p.2182-2197 |
issn | 1525-2027 1525-2027 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03581782v1 |
source | Wiley-Blackwell Open Access Titles |
subjects | Anisotropy crustal scattering Estimates Faults Heterogeneity Imaging mean free path microseism wave field Microseisms Noise noise correlations noise-based imaging Physical properties Propagation Regional Sciences of the Universe Surface waves Travel time |
title | Interaction of microseisms with crustal heterogeneity: A case study from the San Jacinto fault zone area |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20microseisms%20with%20crustal%20heterogeneity:%20A%20case%20study%20from%20the%20San%20Jacinto%20fault%20zone%20area&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Hillers,%20G.&rft.date=2013-07&rft.volume=14&rft.issue=7&rft.spage=2182&rft.epage=2197&rft.pages=2182-2197&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1002/ggge.20140&rft_dat=%3Cproquest_24P%3E1642283785%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642013307&rft_id=info:pmid/&rfr_iscdi=true |